【题目】综合题。
(1)已知 ,用含a,b的式子表示下列代数式。
①求: 的值 ②求: 的值
(2)已知 ,求x的值.
【答案】
(1)
解:∵ 4m= a , 8n= b ,
∴ 22m= a , 23n= b.
①22m+3n=22m×23n=ab.
② 24m-6n=24m÷26n=(22m)2÷(23n)2=a2÷b2= .
(2)
解: 2×8x×16 = 223 ,
2×23x×24=223,
21+3x+4=223,
即1+3x+4=23,
解得x=6.
【解析】(1)由已知可得22m= a , 23n= b.运用了幂的乘方法则;
(2)运用同底数幂的乘法法则.
【考点精析】掌握同底数幂的乘法和同底数幂的除法是解答本题的根本,需要知道同底数幂的乘法法则aman=am+n(m,n都是正数);同底数幂的除法法则:am÷an=am-n(a≠0,m,n都是正整数,且m>n).
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=﹣x2+bx+c的图象交x轴于点A(4,0)和点B,交y轴于点C(0,4).
(1)求这个二次函数的表达式;
(2)若点P在第一象限内的抛物线上,求四边形AOCP面积的最大值和此时点P的坐标;
(3)在平面直角坐标系内,是否存在点Q,使A,B,C,Q四点构成平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加快5G网络的建设,国家根据发展规划,自从2015年以来投入研发和建设的经费为164100000000元,将数164100000000用科学记数法表示为( )
A. 1.641×1012B. 0.1641×1013
C. 1.641×1011D. 1.641×1013
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+px+q=0的两个根为x1=3,x2=﹣4,则二次三项式x2﹣px+q可分解为( )
A. (x+3)(x﹣4)B. (x﹣3)(x+4)C. (x+3)(x+4)D. (x﹣3)(x﹣4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.
(1)当t= 时,则OP= ,S△ABP= ;
(2)当△ABP是直角三角形时,求t的值;
(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ·BP=3.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com