【题目】如图, 是半圆的直径, 是半圆上的一点, 切半圆于点,于为点,与半圆交于点.
(1)求证: 平分;
(2)若,求圆的直径.
【答案】(1)见解析;(2).
【解析】
(1)连结OC,如图,根据切线的性质得OC⊥CD,则OC∥BD,所以∠1=∠3,加上∠1=∠2,从而得到∠2=∠3;
(2)连结AE交OC于G,如图,利用圆周角定理得到∠AEB=90°,再证明四边形CDEG为矩形得到GE=CD=8,然后利用勾股定理计算AB的长即可.
解:(1)证明:连结OC,如图,
∵CD为切线,
∴OC⊥CD,
∵BD⊥DF,
∴OC∥BD,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴BC平分∠ABD;
(2)解:连结AE交OC于G,如图,
∵AB为直径,
∴∠AEB=90°,
∵OC∥BD,
∴OC⊥CD,
∴AG=EG,
易得四边形CDEG为矩形,
∴GE=CD=8,
∴AE=2EG=16,
在Rt△ABE中,AB==,
即圆的直径为.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.
(1)若OACD,求阴影部分的面积;
(2)求证:DEDM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】例:利用函数图象求方程x2﹣2x﹣2=0的实数根(结果保留小数点后一位).
解:画出函数y=x2﹣2x﹣2的图象,它与x轴的公共点的横坐标大约是﹣0.7,2.7.所以方程x2﹣2x﹣2=0的实数根为x1≈﹣0.7,x2≈2.7.我们还可以通过不断缩小根所在的范围估计一元二次方程的根.……这种求根的近似值的方法也适用于更高次的一元方程.
根据你对上面教材内容的阅读与理解,解决下列问题:
(1)利用函数图象确定不等式x2﹣4x+3<0的解集是 ;利用函数图象确定方程x2﹣4x+3=的解是 .
(2)为讨论关于x的方程|x2﹣4x+3|=m解的情况,我们可利用函数y=|x2﹣4x+3|的图象进行研究.
①请在网格内画出函数y=|x2﹣4x+3|的图象;
②若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解,则m的取值范围为 ;
③若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解x1,x2,x3,x4(x1<x2<x3<x4),满足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,是的直径,点是上一点,点是弧的中点,弦于点,过点的切线交的延长线于点,连接,分别交于点,连接.给出下列结论:①;②;③点是的外心;④.其中正确的是( )
A.①②③B.②③④C.①③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中的位置如图所示,直线与双曲线在第一象限的图象相交于A,E两点,且,E是BC的中点.
(1)连接OE,若的面积为,的面积为,则________.(直接填“”“”或“”);
(2)求和的解析式;
(3)请直接写出当x取何值时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:
(1)求a,b的值;
(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;
(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com