精英家教网 > 初中数学 > 题目详情
12.如图,在?ABCD中,∠A=65°,将?ABCD绕顶点B顺时针旋转到?A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1的大小为(  )
A.45°B.50°C.65°D.70°

分析 由旋转的性质可知:?ABCD全等于?A1BC1D1,得出BC=BC1,由等腰三角形的性质得出∠BCC1=∠C1,由旋转角∠∠ABA1=∠CBC1,根据等腰三角形的性质计算即可.

解答 解:∵?ABCD绕顶点B顺时针旋转到?A1BC1D1
∴BC=BC1
∴∠BCC1=∠C1
∵∠A=65°,
∴∠C=∠C1=65°,
∴∠BCC1=∠C1
∴∠CBC1=180°-2×65°=50°,
∴∠ABA1=50°,
故选:B.

点评 本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.一个运算程序输入x后,得到的结果是4x3-2,则这个运算程序是(  )
A.先乘4,然后立方,再减去2B.先立方,然后减去2,再乘4
C.先立方,然后乘4,再减去2D.先减去2,然后立方,再乘4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.汽车在行驶中,由于惯性作用刹车后还要向前滑行一段路程才能停止,我们称这段路程为“刹车距离”.已知某种汽车的刹车距离y(m)与车速x(km/h)之间有如下关系:y=0.01x2+0.1x,当司机小张以80km/h的速度行驶时,发现前方大约60m处有一障碍物阻塞了道路,于是小张紧急刹车,问汽车是否撞到障碍物?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.设M=$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2015}+\sqrt{2016}}$,N=1-2+3-4+…+2015-2016,求$\frac{N}{(M+1)^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.先化简,再求值:
(1)已知a3m=3,b3n=2,求(a2m3+(bn3-a2mbna4mb2n的值
(2)先化简,再求值.(-2xy)2•y2-(-3xy)2+(-3x)2•(-y)4-10(xy22,其中x=-3,$y=\frac{1}{3}$.
(3)已知x=2,y=-1;求(x-5y)(-x-5y)-(-x+5y)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知$\left\{{\begin{array}{l}{a+2b=4}\\{2a+b=5}\end{array}}\right.$,则a+b的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:3a(4a2-a+1)-(4a2+1)(3a+2),其中a=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)(-a2b)2•2ab;
(2)(x+3)(x-4);
(3)(2a-3b)2+(2a+3b)(2a-3b);
(4)2012+1992.(运用乘法公式计算)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.多项式(x+2)(2x-1)-2(x+2)可以因式分解成(x+m)(2x+n),则m-n的值是(  )
A.2B.-2C.4D.5

查看答案和解析>>

同步练习册答案