精英家教网 > 初中数学 > 题目详情

【题目】如图1,点分别在上,射线点顺时针旋转至便立即逆时针回转,射线点顺时针旋转至便立即逆时针回转.射线转动的速度是每秒度,射线转动的速度是每秒度.

1)直接写出的大小为_______

2)射线转动后对应的射线分别为,射线交直线于点,若射线比射线先转动秒,设射线转动的时间为秒,求为多少时,直线直线

3)如图2,若射线同时转动秒,转动的两条射线交于点,作,点上,请探究的数量关系.

【答案】160°;(2)当秒或秒时直线;(3关系不会变化,

【解析】

(1)根据得到,再根据直线平行的性质即可得到答案;

(2)设灯转动t秒,直线直线,分情况讨论重合前平行、重合后平行即可得到答案;

(3)根据补角的性质表示出,再根据三角形内角和即可表示出,即可得到答案;

解:(1)∵

(两直线平行,内错角相等)

故结果为:

2)设灯转动t秒,直线直线

①当时,如图,

解得

②当时,如图,

解得

综上所述,当秒或秒时直线

3关系不会变化,

理由:设射线AM转动时间为m秒,

关系不变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和AB重合),BECDE,交直线ACF

(1)点D在边AB上时,试探究线段BDABAF的数量关系,并证明你的结论;

(2)点DAB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请写出正确结论并证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,E为对角线AC上的一个动点,连结DE并延长交射线AB于点F,连结BE

1)求证:∠AFD=EBC

2)若∠DAB=90°,当BEF为等腰三角形时,求∠EFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的面积为20,对角线AC,BD相交于点O,点E,F分别是AB,CD上的点,且AE=DF,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成不合格合格优秀三个等级.为了了解电脑培训的效果,随机抽取其中32名学生两次考试考分等级制成统计图(如图),试回答下列问题:

(1)32名学生经过培训,考分等级不合格的百分比由________下降到________

(2)估计该校640名学生,培训后考分等级为合格优秀的学生共有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点ADy轴正半轴上,点BC分别在x轴上,CD平分∠ACB,与y轴交于D点,∠CAO=90°-BDO.

1)求证:AC=BC

2)如图2,点C的坐标为(40),点EAC上一点,且∠DEA=DBO,求BC+EC的长;

3)如图3,过DDFACF点,点HFC上一动点,点GOC上一动点,当HFC上移动、点GOC上移动时,始终满足∠GDH=GDO+FDH,试判断FHGHOG这三者之间的数量关系,写出你的结论并加以证明.

(图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),分别以直角△ABC的三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难说明S1=S2+S3。(1)如图(2),分别以直角△ABC三边为一边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(2)如图(3),若分别以直角△ABC三边为一边向外作三个正三角形,其面积分别用S1、S2、S3表示,试确定S1、S2、S3之间的关系并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F

1求证:ABE≌△CAD;2BFD的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题:如图1,△ABC中,∠B=30°,AB=3,BC=4,则△ABC的面积等于
(1)【回顾】
如图1,△ABC中,∠B=30°,AB=3,BC=4,则△ABC的面积等于

(2)【探究】
图2是同学们熟悉的一副三角尺,一个含有30°的角,较短的直角边长为a;另一个含有45°的角,直角边长为b,小明用两副这样的三角尺拼成一个平行四边形ABCD(如图3),用了两种不同的方法计算它的面积,从而推出sin75°= ,小丽用两副这样的三角尺拼成了一个矩形EFGH(如图4),也推出sin75°= ,请你写出小明或小丽推出sin75°= 的具体说理过程.

(3)【应用】
在四边形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如图5)

①点E在AD上,设t=BE+CE,求t2的最小值;
②点F在AB上,将△BCF沿CF翻折,点B落在AD上的点G处,点G是AD的中点吗?说明理由.

查看答案和解析>>

同步练习册答案