精英家教网 > 初中数学 > 题目详情
好学的小宸利用电脑作了如下的探索:
(1)如图①,将边长为2的等边三角形复制若干个后向右平移,使一条边在同一直线上.则△A2C1B1的面积为   
(2)求△A4C3B3的面积;
(3)在保持图①中各三角形的边OB1=B1B2=B2B3=B3B4=2不变的前提下,小宸又作了如下探究:将顶点A1、A2、A3、A4向上平移至同一高度(如图②),若OA4=OB4,试判断以OA2、OA3和OA4为三边能否构成三角形?若能,请判断这个三角形的形状;若不能,请说明理由.
(1);(2).(3)这三边能构成直角三角形.

试题分析:(1)分别过A2、C1作x轴的垂线,垂足分别为E、F,根据勾股定理求得相应线段的长度,由△A2C1B1=S梯形A1EFC1-△C1FB1-△A2EB1可求得;
(2)分别计算△A4B3B4、△A4OB4的面积,利用相似三角形即可求出△A4C3B3的面积;
(3)根据勾股定理的逆定理即可判定三角形为直角三角形.
试题解析:(1);
(2)解得△A4B3B4的面积为:
解得△A4OB4的面积为:
利用△OC3B3∽△OA4B4得:S四边形C3B3B4A4:S△OA4B4=7:16
∴四边形C3B3B4A4的面积为:
∴△A4C3B3的面积为:.
(3)能.
设这些等腰三角形的高为h.
则:OA22=9+h2
OA32=25+h2
OA42=64
∵OA4=OB4
∴∠OA4B=∠OB4A4=∠A4B3B4
∴△OA4B4∽△A4B4B3

∴A4B4=4
∴h2=15
∴OA22+OA32=OA42
即这三边能构成直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

.如果且对应高之比为2:3,那么的面积之比是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题情境:如图1,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC边交于P、Q两点。
问题探究:(1)在旋转过程中,
①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由。
②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由。
③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为_______________(直接写出结论,不必证明)
(2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由。

图1              图2                 图3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为(  )
A.4cmB.6cmC.8cmD.10cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

△ABC与△DEF的相似比为5:2,则△ABC与△DEF的周长的比为(    )
A.5:2B.2:5C.4:2D.25:4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若两个等边三角形的边长分别为a与3a,则它们的面积之比为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB∥DC,DE=2AE,CF=2BF,且DC=5,AB=8,则EF=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则E点的坐标为(  )
A.(,0)B.
C.()D.(2,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,则的值是( )
A.B.C.-D.-

查看答案和解析>>

同步练习册答案