精英家教网 > 初中数学 > 题目详情
25、在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:
(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.
分析:只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.
解答:解:以(1)、(2)、(4)为条件,(3)为结论.
证明:∵AE=CF,
∴AF=CE,
∵AD∥BC,
∴∠A=∠C,
又AD=BC,
∴△ADF≌△CBE(SAS),
∴∠B=∠D.
点评:本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

31、如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程:
已知条件:
AD∥BC
AE=CF
AD=BC

求证结论:
∠B=∠D

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,AD=CB,AE=CF,∠A=∠C.求证:△AFD≌△BEC.
精英家教网
(2)如图:△ABC中,AB=AC=4,∠BAC=120°,D为BC中点,DE⊥AC,求AE的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程:

已知条件:                     

求证结论:      

 

证明:

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程:
已知条件:                     
求证结论:      
证明:

查看答案和解析>>

同步练习册答案