【题目】(Ⅰ)如图,平面上有四个点A,B,C,D.
(1)根据下列语句画图:
①画射线BA;
②画直线AD,BC相交于点E;
③延长线段DC,在线段DC的延长线上取一点F,使CF=BC;
④连接EF.
(2)图中以E为顶点的角中,小于平角的角共有 个.
(Ⅱ)已知:∠AOC=146°,OD为∠AOC的平分线,∠AOB=90°,部分图形如图所示.请补全图形,并求∠BOD的度数.
【答案】(Ⅰ)(1)图形见解析(2)8(II)(1)17°(2)163°
【解析】试题分析:(Ⅰ)(1)根据直线、射线、线段的特点画出图形即可;
(2)根据角的概念:有公共端点是两条射线组成的图形叫做角数出角的个数即可.
(Ⅱ)当OB边在∠AOC的内部时,先由OD平分∠AOC得到∠AOD度数,再由∠BOD=∠AOB-∠AOD计算出∠BOD度数,即可求出答案;当OB边在∠AOC的外部时,先由OD平分∠AOC得到∠AOD度数,再由∠BOD=∠AOB+∠AOD计算出∠BOD度数,即可求出答案.
试题解析:(Ⅰ)(1)如图;
(2)以E为顶点的角中,小于平角的角有8个,故答案为:8.
(II)∵ OD为∠AOC的平分线,且,
∴ (角平分线的定义).
(1)当射线在内部时,如图:
;
(2)当射线OB在 外部时,如图:
.
科目:初中数学 来源: 题型:
【题目】如图,点B、C在线段AD上,CD=2AB+3.
(1)若点C是线段AD的中点,求BC-AB的值;
(2)若BC=AD,求BC-AB的值;
(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某市2016年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2016年10月份的水费为620元,求该企业2016年10月份的用水量;
(3)为鼓励企业节约用水,该市自2017年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2016年收费标准收取水费外,超过80吨的部分每吨另加收元的污水处理费,若某企业2017年3月份的水费和污水处理费共600元,求这个企业3月份的用水量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据: =1.41, =1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在的正方形网格中,点P是的边OB上的一点.
(1)过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为H;
(2)线段PH的长度是点P到直线__________的距离;
(3)线段__________的长度是点C到直线OB的距离;
(4)线段PC、PH、OC这三条线段大小关系是__________(用“<”号连接).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com