ÎÒÃÇÖªµÀ¼Ù·ÖÊý¿ÉÒÔ»¯Îª´ø·ÖÊý£®ÀýÈ磺
8
3
=2+
2
3
=2
2
3
£®ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°Õæ·Öʽ¡±£®ÀýÈ磺
x-1
x+1
£¬
x2
x-1
ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»
3
x+1
£¬
2x
x2+1
ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËƵģ¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´ÕûʽÓëÕæ·ÖʽºÍµÄÐÎʽ£©£®
ÀýÈ磺
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
£»
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1+
1
x-1
£®
£¨1£©½«·Öʽ
x-1
x+2
»¯Îª´ø·Öʽ£»
£¨2£©Èô·Öʽ
2x-1
x+1
µÄֵΪÕûÊý£¬ÇóxµÄÕûÊýÖµ£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÖеÄÔĶÁ²ÄÁϽ«Ô­Ê½»¯Îª´ø·Öʽ¼´¿É£»
£¨2£©¸ù¾ÝÌâÖеÄÔĶÁ²ÄÁϽ«Ô­Ê½»¯Îª´ø·Öʽ£¬¸ù¾Ý½á¹ûΪÕûÊý£¬È·¶¨³öxµÄÕûÊýÖµ¼´¿É£®
½â´ð£º½â£º£¨1£©
x-1
x+2

=
(x+2)-3
x+2

=1-
3
x+2
£»

£¨2£©
2x-1
x+1
=
2(x+1)-3
x+1
=2-
3
x+1
£¬
µ±
2x-1
x+1
ΪÕûÊýʱ£¬
3
x+1
ҲΪÕûÊý£¬
¡àx+1¿ÉÈ¡µÃµÄÕûÊýֵΪ¡À1£¬¡À3£¬
¡àxµÄ¿ÉÄÜÕûÊýֵΪ0£¬-2£¬2£¬-4£®
µãÆÀ£º´ËÌ⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÒÃÇÖªµÀ£¬¼Ù·ÖÊý¿ÉÒÔ»¯Îª´ø·ÖÊý£®ÀýÈ磺
8
3
=2+
2
3
=2
2
3
£®ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°Õæ·Öʽ¡±£®ÀýÈ磺
x-1
x+1
£¬
x2
x-1
ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»
3
x+1
£¬
2x
x2+1
ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËƵģ¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´£ºÕûʽÓëÕæ·ÖʽºÍµÄÐÎʽ£©£®
ÀýÈ磺
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
£» 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1
£®
£¨1£©½«·Öʽ
x-1
x+2
»¯Îª´ø·Öʽ£»
£¨2£©Èô·Öʽ
2x-1
x+1
µÄֵΪÕûÊý£¬ÇóxµÄÕûÊýÖµ£»
£¨3£©Çóº¯Êýy=
2x2-1
x+1
ͼÏóÉÏËùÓкá×Ý×ø±ê¾ùΪÕûÊýµÄµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÎÒÃÇÖªµÀ£¬¼Ù·ÖÊý¿ÉÒÔ»¯Îª´ø·ÖÊý£®ÀýÈ磺Êýѧ¹«Ê½=Êýѧ¹«Ê½=Êýѧ¹«Ê½£®ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°Õæ·Öʽ¡±£®ÀýÈ磺Êýѧ¹«Ê½£¬Êýѧ¹«Ê½ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»Êýѧ¹«Ê½£¬Êýѧ¹«Ê½ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËƵģ¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´£ºÕûʽÓëÕæ·ÖʽºÍµÄÐÎʽ£©£®
ÀýÈ磺Êýѧ¹«Ê½£» Êýѧ¹«Ê½+Êýѧ¹«Ê½£®
£¨1£©½«·ÖʽÊýѧ¹«Ê½»¯Îª´ø·Öʽ£»
£¨2£©Èô·ÖʽÊýѧ¹«Ê½µÄֵΪÕûÊý£¬ÇóxµÄÕûÊýÖµ£»
£¨3£©Çóº¯ÊýÊýѧ¹«Ê½Í¼ÏóÉÏËùÓкá×Ý×ø±ê¾ùΪÕûÊýµÄµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÎÒÃÇÖªµÀ£¬¼Ù·ÖÊý¿ÉÒÔ»¯Îª´ø·ÖÊý£®ÀýÈ磺
8
3
=2+
2
3
=2
2
3
£®ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°Õæ·Öʽ¡±£®ÀýÈ磺
x-1
x+1
£¬
x2
x-1
ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»
3
x+1
£¬
2x
x2+1
ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËƵģ¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´£ºÕûʽÓëÕæ·ÖʽºÍµÄÐÎʽ£©£®
ÀýÈ磺
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
£» 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1
£®
£¨1£©½«·Öʽ
x-1
x+2
»¯Îª´ø·Öʽ£»
£¨2£©Èô·Öʽ
2x-1
x+1
µÄֵΪÕûÊý£¬ÇóxµÄÕûÊýÖµ£»
£¨3£©Çóº¯Êýy=
2x2-1
x+1
ͼÏóÉÏËùÓкá×Ý×ø±ê¾ùΪÕûÊýµÄµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸