精英家教网 > 初中数学 > 题目详情

如图,在边长为2的等边三角形ABC中,以B为圆心,AB为半径作,在扇形BAC内作⊙O与AB、BC、都相切,则⊙O的周长等于

A.            B.            C.            D.

C

解析试题分析:设切点为M,连接BO、MO,则∠OMB=90°,根据切线的性质结合等边三角形的性质可得∠OBM=30°,根据含30°的直角三角形的性质可得BO=2OM,设⊙O的半径为r,根据两圆内切即可求得结果.
设切点为M,连接BO、MO,则∠OMB=90°

∵等边三角形ABC,⊙O与AB、BC、都相切
∴∠OBM=30°
∴BO=2OM
设⊙O的半径为r,则BO=2-r
∴2-r=2r,解得
则⊙O的周长等于
故选C.
考点:圆和圆的位置关系,切线的性质,等边三角形的性质,含30°的直角三角形的性质
点评:设两圆的半径分别为R和r,且,圆心距为d:外离,则;外切,则;相交:则;内切,则;内含,则

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在边长为1的等边三角形ABC中,若将两条含120°圆心角的
AOB
BOC
及边AC所围成的阴影部分的面积记为S,则S与△ABC面积的比等于(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是(  )
A、4
3
B、3
3
C、2
3
D、
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在边长为20cm的等边三角形ABC纸片中,以顶点C为圆心,以此三角形的高为半径画弧分别交AC、BC于点D、E,则扇形CDE所围的圆锥(不计接缝)的底圆半径为(  )
A、
5
3
3
cm
B、
10
3
3
cm
C、5
3
cm
D、10
3
cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长为2的等边△ABC中,AD⊥BC,点P为边AB上一个动点,过P点作PF∥AC交线段BD于点F,作PG⊥AB精英家教网交AD于点E,交线段CD于点G,设BP=x.
(1)试判断BG与2BP的大小关系,并说明理由;
(2)用x的代数式表示线段DG的长,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b.
(1)求证:AE=b+
3
a;
(2)求a+b的最大值;
(3)若m是关于x的方程:x2+
3
ax=b2+
3
ab的一个根,求m的取值范围.

查看答案和解析>>

同步练习册答案