如图,在边长为2的等边三角形ABC中,以B为圆心,AB为半径作,在扇形BAC内作⊙O与AB、BC、都相切,则⊙O的周长等于
A. B. C. D.
C
解析试题分析:设切点为M,连接BO、MO,则∠OMB=90°,根据切线的性质结合等边三角形的性质可得∠OBM=30°,根据含30°的直角三角形的性质可得BO=2OM,设⊙O的半径为r,根据两圆内切即可求得结果.
设切点为M,连接BO、MO,则∠OMB=90°
∵等边三角形ABC,⊙O与AB、BC、都相切
∴∠OBM=30°
∴BO=2OM
设⊙O的半径为r,则BO=2-r
∴2-r=2r,解得
则⊙O的周长等于
故选C.
考点:圆和圆的位置关系,切线的性质,等边三角形的性质,含30°的直角三角形的性质
点评:设两圆的半径分别为R和r,且,圆心距为d:外离,则;外切,则;相交:则;内切,则;内含,则
科目:初中数学 来源: 题型:
AOB |
BOC |
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:初中数学 来源: 题型:
A、
| ||||
B、
| ||||
C、5
| ||||
D、10
|
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
3 |
3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com