精英家教网 > 初中数学 > 题目详情
(1)完成下面的证明:
已知:如图1,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
求证:∠EGF=90°.
证明:∵HG∥AB,(已知) 
∴∠1=∠3. (
两直线平行,内错角相等
两直线平行,内错角相等
 )
又∵HG∥CD,(已知)
∴∠2=∠4.  (
两直线平行,内错角相等
两直线平行,内错角相等

∵AB∥CD,(已知)
∴∠BEF+
∠EFD
∠EFD
=180°.(
两直线平行,同旁内角互补
两直线平行,同旁内角互补

又∵EG平分∠BEF,(已知)
∴∠1=
1
2
BEH
BEH
.(
角平分线定义
角平分线定义

又∵FG平分∠EFD,(已知)
∴∠2=
1
2
EFD
EFD
.(
角平分线定义
角平分线定义

∴∠1+∠2=
1
2
∠BEH
∠BEH
+
∠EFD
∠EFD
).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(
等量代换
等量代换
).即∠EGF=90°.
(2)如图2,已知∠ACB=90°,那么∠A的余角是哪个角呢?答:
∠B
∠B

小明用三角尺在这个三角形中画了一条高CD(点D是垂足),得到图3,
①请你帮小明在图中画出这条高;
②在图中,小明通过仔细观察、认真思考,找出了三对余角,你能帮小明把它们写出来吗?答:a
∠ACD与∠BCD
∠ACD与∠BCD
;b
∠A与∠ACD
∠A与∠ACD
;c
∠B与∠BCD
∠B与∠BCD

③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明还发现了另外两对相等的角,请你也仔细地观察、认真地思考分析,试一试,能发现吗?把它们写出来,并请说明理由.
(3)在直角坐标系中,第一次将△OAB变换成OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为
(16,3)
(16,3)
,B4的坐标为
(32,0)
(32,0)

②按以上规律将△OAB进行n次变换得到△AnBn,则可知An的坐标为
(2n,3)
(2n,3)
,Bn的坐标为
(2n+1,0)
(2n+1,0)

③可发现变换的过程中A、A1、A2、…、An纵坐标均为
3
3
分析:(1)根据平行线的性质与判定,角平分线的定义,结合图形填空即可;
(2)利用三角尺的直角作出高线,然后根据直角三角形的两锐角互余的性质解答;
(3)观察发现,点A系列的横坐标是2的指数次幂,指数为脚码序号,纵坐标都是3;点B系列的横坐标是2的指数次幂,指数是脚码加1,纵坐标是0,根据此规律解答.
解答:解:(1)答案为:两直线平行,内错角相等;两直线平行,内错角相等;∠EFD,两直线平行,同旁内角互补;BEH,角平分线定义;EFD,角平分线定义;∠BEH,∠EFD,等量关代换;

(2)①如图所示,∠B,

 ②a、∠ACD与∠BCD;b、∠A与∠ACD;c、∠B与∠BCD;
③∠BCD=∠A,∠ACD=∠B,
理由如下:∵∠ACD+∠A=90°,∠ACD+∠BCD=90°,
∴∠BCD=∠A,
∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,
∴∠ACD=∠B;

(3)①(16,3)(32,0),②(2n,3)(2n+1,0)③3.
点评:本题考查了平行线的性质与判定,利用三角尺作三角形的高线,直角三角形的两锐角互余的性质,以及坐标与图形规律的探讨,综合性较强,对同学们的能力要求较高,养成良好的学习习惯是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图:
(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE;
(2)若∠A=∠B,请完成下面的证明:
已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.
求证:CE∥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下面的证明过程 
已知:如图,AB∥CD,AE⊥BD于E,CF⊥BD于F,BF=DE.
求证:△ABE≌△CDF.
证明:∵AB∥CD,∴∠1=
∠2
∠2
.(两直线平行,内错角相等 )
∵AE⊥BD,CF⊥BD,
∴∠AEB=
∠CFD
∠CFD
=90°.
∵BF=DE,∴BE=
DF
DF

在△ABE和△CDF中,
∴△ABE≌△CDF
(ASA)
(ASA)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠1=∠2,∠3=∠4,∠A=100°,求x的值.
若已知条件变为△ABC的∠B和∠C的平分线BE,CF交于点G,请完成下面的证明.求证:
(1)∠BGC=180°-
1
2
(∠ABC+∠ACB);
(2)∠BGC=90°+
1
2
∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.
(1)完成下面的证明:
∵MG平分∠BMN
已知
已知

∴∠GMN=
1
2
∠BMN
角平分线的定义
角平分线的定义

同理∠GNM=
1
2
∠DNM.
∵AB∥CD
已知
已知

∴∠BMN+∠DNM=
180°
180°

∴∠GMN+∠GNM=
90°
90°

∵∠GMN+∠GNM+∠G=
180°
180°

∴∠G=
90°
90°

∴MG与NG的位置关系是
MG⊥NG
MG⊥NG

(2)把上面的题设和结论,用文字语言概括为一个命题:
两平行直线被第三条直线所截,同旁内角的角平分线互相垂直
两平行直线被第三条直线所截,同旁内角的角平分线互相垂直

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下面的证明.
如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,AB∥DE,∠1=∠A.求证:FD∥AC.
证明:∵AB∥DE(已知),
∴∠1=
∠BFD
∠BFD
.(
两直线平行,内错角相等
两直线平行,内错角相等
 )
又∠1=∠A(已知),
∴∠A=
∠BFD
∠BFD
.(
等量代换
等量代换
 )
∴FD∥AC.(
同位角相等,两直线平行
同位角相等,两直线平行

查看答案和解析>>

同步练习册答案