精英家教网 > 初中数学 > 题目详情
△ABC中,AB=10,BC=16,BC边上的中线AD=6,则AC=
 
分析:首先根据中线的定义得BD=8,则有BD2+AD2=AB2.根据勾股定理的逆定理得AD⊥BC,再根据线段垂直平分线上的点到线段两端的距离相等,得AC=AB=10.
解答:精英家教网解:由题可知,在△ABD中,AB=10,BD=
1
2
BC=8,AD=6.
因为AD2+BD2=AB2所以△ABD为直角三角形
即AD⊥BC,又BD=DC
根据三线合一,所以AC=AB=10.
点评:能够运用勾股定理的逆定理判定三角形是直角三角形.熟悉线段垂直平分线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,∠A=36°,
(1)用尺规作图的方法,过B点作∠ABC的平分线交AC于D(不写作法,保留作图痕迹);
(2)求证:BC=BD=AD;
(3)求证:AD2=AC•DC;
(4)设
CDDA
=x,求x.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,在△ABC中,AB=AC,点D,E在直线BC上运动.如果∠DAE=l05°,△ABD∽△ECA,则∠BAC=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网△ABC中,AB=AC,D、E分别是AB、AC的中点,若AB=4,BC=6,则△ADE的周长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

13、在△ABC中,AB=AC,BD是△ABC中线,已知△ABD和△BDC的周长之差为6,△ABC的周长是30,求这个等腰三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在钝角△ABC中,AB=AC,以BC为直径作⊙O,⊙O与BA、CA的延长线分别交于D、E两点精英家教网,连接AO、BE、DC.
(1)求证:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度数.

查看答案和解析>>

同步练习册答案