精英家教网 > 初中数学 > 题目详情
12.已知m,n为常数,若mx+n>0的解集为x>$\frac{2}{5}$,则nx-m<0的解集是x>-$\frac{5}{2}$.

分析 由mx+n>0的解集为x>$\frac{2}{5}$得$\frac{n}{m}$=-$\frac{2}{5}$,且m>0、n<0,从而得出nx-m<0的解集是x>$\frac{m}{n}$,即x>-$\frac{5}{2}$.

解答 解:∵mx+n>0,即x>-$\frac{n}{m}$的解集为x>$\frac{2}{5}$,
∴-$\frac{n}{m}$=$\frac{2}{5}$,即$\frac{n}{m}$=-$\frac{2}{5}$,且m>0,
∴n<0,
则nx-m<0的解集是x>$\frac{m}{n}$,即x>-$\frac{5}{2}$,
故答案为x>-$\frac{5}{2}$.

点评 本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为($\sqrt{3}$,1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.两位老师准备组织七年级(1)班的学生去宜兴竹海春游,甲、乙两家旅行杜的报价相同,且都表示还可提供优惠,其中,甲旅行社对老师和学生一律7折收费,乙旅行社对老师免费,学生8折收费,请问他们应选择哪家旅行社?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在Rt△ABC中,AC=8,BC=6,点D为斜边AB上一点,DE⊥AB交AC于点E,将△AED沿DE翻折,点A的对应点为点F.如果△EFC是直角三角形,那么AD的长为$\frac{7}{5}$或5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知关于x的方程x+$\frac{1}{x}$=c+$\frac{1}{c}$的解为x1=c,x2=$\frac{1}{c}$,请求出x-$\frac{4}{x-3}$=a-$\frac{4}{a-3}$的解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知如图:a∥b,∠2=70°,则∠1=110°,∠3=110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离y(千米)和所用的时间x(小时)之间的函数关系如图所示.
(1)小李从乙地返回甲地用了多少小时?
(2)求小李出发5小时后距离甲地多远?
(3)在甲、乙两地之间有一丙地,小李从去时途经丙地,到返回时路过丙地,共用了2小时50分钟,求甲、丙两地相距多少千米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-A
∵S四边形ADCB=S△ACD+S△ABC=$\frac{1}{2}$b2+$\frac{1}{2}$aB.
又∵S四边形ADCB=S△ADB+S△DCB=$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2
证明:连结BD,过点B作DE边上的高BF,则BF=b-a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=$\frac{1}{2}$ab+$\frac{1}{2}$b2+$\frac{1}{2}$ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a),
∴$\frac{1}{2}$ab+$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a),
∴a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.点A(-1,y1),B(-2,y2)在函数y=2x的图象上,则y1,y2的大小关系是(  )
A.y1>y2B.y1<y2C.y1=y2D.不能确定

查看答案和解析>>

同步练习册答案