精英家教网 > 初中数学 > 题目详情
如图,关于x的二次函数y=x2-2mx-m-2的图象与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于C点
(1)当m为何值时,AC=BC;
(2)当∠BAC=∠BCO时,求这个二次函数的表达式.
(1)要使AC=BC,则该抛物线的对称轴应是y轴,
则有-
-2m
2×1
=0
,即m=0,
∴当m=0时,AC=BC.

(2)当∠BAC=∠BCO,有Rt△AOCRt△COB,则
OC
OB
=
OA
OC

即OC2=OA•OB,
由题意,知OC=|-m-2|,OA=|x1|=-x1,OB=|x2|=x2
由根与系数关系,得x1x2=-m-2,
∴OA•OB=-x1x2=m+2
则|-m-2|2=m+2,
解,得m=-2或m=-1.
当m=-2时,二次函数为y=x2+4x,此时x1=-4,x2=0,不合题意,舍去.
当m=-1时,二次函数为y=x2+2x-1,此时x1=-1-
2
,x2=-1+
2
,符合题意.
∴当∠BAC=∠BCO时,这个二次函数的表达式为y=x2+2x-1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2经过点(1,5),当y=15时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,OC=4,AO=2OC,且抛物线对称轴为直线x=-3.
(1)求该抛物线的函数表达式;
(2)己知矩形DEFG的一条边DE在线段AB上,顶点F、G分别在AC、BC上,设OD=m,矩形DEFG的面积为S,当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=
2
5
DF
,求出此时点M的坐标;
(3)若点Q是抛物线上一点,且横坐标为-4,点P是y轴上一点,是否存在这样的点P,使得△BPQ是直角三角形?如果存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=
1
3
x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.
(1)点C的坐标是______线段AD的长等于______;
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点C,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以边长为1的正方形ABCO的两边OA、OC所在直线为轴建立坐标系,点O为原点.
(1)求以A为顶点,且经过点C的抛物线解析式;
(2)求(1)中的抛物线与对角线OB交于点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2+bx+c经过点(0,3)和(-1,0),那么抛物线的解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(1,0)且与直线y=
3
4
x+3相交于B、C两点,点B在x轴上,点C在y轴上.
(1)求二次函数的解析式及函数的顶点坐标
(2)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△PAB的面积S与x之间的函数关系式,并写出自变量取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某养殖专业户计划利用房屋的一面墙修造如图所示的长方体水池,培育不同品种的鱼苗.他已准备可以修高为3m.长30m的水池墙的材料,图中EF与房屋的墙壁互相垂直,设AD的长为xm.(不考虑水池墙的厚度)
(1)请直接写出AB的长(用含有x的代数式表示);
(2)试求水池的总容积V与x的函数关系式,并写出x的取值范围;
(3)如果房屋的墙壁可利用的长度为10.5m,请利用函数图象与性质求V的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C
(1)抛物线对称轴方程为______;
(2)若D点为抛物线对称轴上一点,若以A,B,C,D为顶点的四边形是正方形,则a,b满足的关系式是______.

查看答案和解析>>

同步练习册答案