精英家教网 > 初中数学 > 题目详情
10.如图,在平面直角坐标系中,抛物线y=-x2+4x的顶点为A,与x轴分别交于O、B两点,过顶点A分别作AC⊥x轴于点C,AD⊥y轴于点D,连接BD,交AC于点E,则△ADE与△BCE的面积和为4.

分析 根据抛物线解析式求得顶点A、抛物线与x轴的交点坐标,由题意得出AD=BC=2、AC=4,最后依据三角形的面积公式可得答案.

解答 解:∵y=-x2+4x=-(x-2)2+4,
∴顶点A(2,4),
∵AC⊥x、AD⊥y轴,
∴AD=OC=2、AC=4,
令y=0,得:-x2+4x=0,
解得:x=0或x=4,
则OB=4,
∴BC=OB-OC=2,
∴AD=BC=2,
则S△ADE+S△BCE=$\frac{1}{2}$•AD•AE+$\frac{1}{2}$•BC•CE=$\frac{1}{2}$•AD•(AE+CE)=$\frac{1}{2}$•AD•AC=$\frac{1}{2}$×2×4=4,
故答案为:4.

点评 本题主要考查抛物线与x轴的交点问题,根据抛物线求出顶点坐标及其与坐标轴的交点坐标是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知:如图,D是△ABC的边上一点,M是AC的中点,CN∥AB交DM的延长线于N,且AB=10,BC=8,AC=7.
(1)求证:四边形ADCN是平行四边形;
(2)当AD为何值时,四边形ADCN是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知单项式3x2y3与-5x2y2的积为mx4yn,那么m-n=-20.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,AC⊥BC,AC=BC,DC⊥EC,DC=EC,BE的延长线交直线AD于点F
(1)如图1,求证:BF⊥AD;
(2)如图1,连接FC,判断FC、FE、FD之间的数量关系,并说明理由;
(3)如图2,G为AE中点,I为BD中点,若AC=BC=4,EC=CD=1,当△ABE的面积为6时,求GI的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,矩形ABCD的两条对角线相交于点O,AB=3cm,BC=4cm,则矩形ABCD的周长等于14cm,面积等于12cm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.下面是“以已知线段为直径作圆”的尺规作图过程.
已知:如图1,线段AB.
求作:以AB为直径的⊙O.
作法:如图2,
(1)分别以A,B为圆心,大于$\frac{1}{2}$AB的长为半径
作弧,两弧相交于点C,D;
(2)作直线CD交AB于点O;
(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.
请回答:该作图的依据是垂直平分线的判定和圆的定义.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.

该事件最有可能是③(填写一个你认为正确的序号).
①掷一个质地均匀的正六面体骰子,向上一面的点数是2;
②掷一枚硬币,正面朝上;
③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若直角三角形的两条直角边a,b满足a2-6a+9+|b-4|=0,则该直角三角形斜边上的中线长为2.5.

查看答案和解析>>

同步练习册答案