分析 (1)由∠AOB=90°知∠BOC+∠AOC=90°、∠AOD+∠BOE=90°,根据∠AOD=∠AOC可得答案;
(2)①由∠COE=140°知∠COD=40°,分AB在直线DE上方和下方两种情况,根据平行线的性质分别求得∠AOD度数,从而求得t的值;
②当OA平分∠COD时∠AOD=∠AOC、当OC平分∠AOD时∠AOC=∠COD、当OD平分∠AOC时∠AOD=∠COD,分别列出关于t的方程,解之可得;
③由∠AOC=∠COE-∠AOE=140°-∠AOE、∠BOE=90°-∠AOE得∠AOC-∠BOE=(140°-∠AOE)-(90°-∠AOE)=50°.
解答 解:(1)∠BOC=∠BOE,
∵∠AOB=90°,
∴∠BOC+∠AOC=90°,∠AOD+∠BOE=90°,
∵OA平分∠COD,
∴∠AOD=∠AOC,
∴∠BOC=∠BOE;
(2)①∵∠COE=140°,
∴∠COD=40°,
如图1,当AB在直线DE上方时,
∵AB∥OC,
∴∠AOC=∠A=30°,
∴∠AOD=∠AOC+∠COD=70°,即t=7;
如图2,当AB在直线DE下方时,
∵AB∥OC,
∴∠COB=∠B=60°,
∴∠BOD=∠BOC-∠COD=20°,
则∠AOD=90°+20°=110°,
∴t=$\frac{360°-110°}{10}$=25,
故答案为:7或25;
②当OA平分∠COD时,∠AOD=∠AOC,即10t=20,解得t=2;
当OC平分∠AOD时,∠AOC=∠COD,即10t-40=40,解得t=8;
当OD平分∠AOC时,∠AOD=∠COD,即360-10t=40,解得:t=32;
综上,t的值为2、8、32;
③∵∠AOC=∠COE-∠AOE=140°-∠AOE,∠BOE=90°-∠AOE,
∴∠AOC-∠BOE=(140°-∠AOE)-(90°-∠AOE)=50°,
∴∠AOC-∠BOE的值为50°.
点评 本题主要考查平行线的性质、角平分线的性质、余角的性质及角的计算,根据题意全面考虑所有可能以分类讨论是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2016-2017学年北京市西城区七年级上学期期末考试数学试卷(解析版) 题型:单选题
如图所示,用量角器度量一些角的度数。下列结论中正确的是( )
A. ∠BOC=60° B. ∠COD=150°
C. ∠AOC与∠BOD的大小相等 D. ∠AOC与∠BOD互余
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{x^2}{x^6}=\frac{1}{x^3}$ | B. | $\frac{{a}^{2}-{b}^{2}}{a-b}$=a+b | ||
C. | $\frac{a+1}{{a}^{2}+1}$=$\frac{1}{a+1}$ | D. | $\frac{x+1}{{x}^{2}-2x+1}$=$\frac{1}{x+1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com