精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH?H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH?重叠部分的面积为y,求y与t的函数关系.
解:(1)∵AH:AC=2:3,AC=6
∴AH=AC=×6=4
又∵HF∥DE,
∴HG∥CB,∴△AHG∽△ACB
=,即=
∴HG=∴S△AHG=AH*HG=×4×=
(2)①能为正方形
∵HH′∥CD,HC∥H′D,
∴四边形CDH′H为平行四边形
又∠C=90°,
∴四边形CDH?H为矩形
又CH=AC﹣AH=6﹣4=2
∴当CD=CH=2时,
四边形CDH′H为正方形
此时可得t=2秒时,四边形CDH?H为正方形.
②(Ⅰ)∵∠DEF=∠ABC,
∴EF∥AB
∴当t=4秒时,直角梯形的腰EF与BA重合.
当0≦t≦4时,重叠部分的面积为直角梯形DEFH′的面积.
过F作FM⊥DE于M,=tan∠DEF=tan∠ABC===
∴ME=FM=×2=,HF=DM=DE﹣ME=4﹣=
∴直角梯形DEFH′的面积为(4+)×2=
∴y=
(Ⅱ)∵当4<t≦5时,重叠部分的面积为四边形CBGH的面积一矩形CDH?H的面积.
而S四边形CBGH=S△ABC﹣S△AHG=×8×6﹣=
S矩形CDH′H=2t
∴y=﹣2t.
(Ⅲ)当5<t≦8时,如图,设H′D交AB于P,BD=8﹣t
=tan∠ABC=
∴PD=DB=(8﹣t)
∴重叠部分的面积y=S
△PDB=PD×DB=(8﹣t)(8﹣t)=(8﹣t)2=t2﹣6t+24.
∴重叠部分面积y与t的函数关系式:
y=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案