精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O1的直径,点C是⊙O1上不同于A,B的一点,以线段AC为直径作⊙O2交AB于点D,过点D作DEBC,交⊙O2于点E,交AC于点F.求证:
(1)EC是⊙O1的切线;
(2)CE2=EF•BC.
证明:(1)连接O1C,则∠O1CB=∠B,
∵DEBC,
∴∠EDA=∠B.
∵∠EDA=∠ECA,
∴∠ECA=∠O1CB.
∵AB是⊙O1的直径,
∴∠ACO1+∠O1CB=90°.
∵∠ECA=∠O1CB,
∴∠ACO1+∠ECA=90°.
∴EC是⊙O1的切线.

(2)连接CD,则∠CDA=∠CDB=90°,
∵DEBC,∠ACB=90°,
∴∠CFD=∠ACB=90°.
∵AC是⊙O2的直径,
∴AC垂直平分ED.
∴EF=FD,CE=CD.
∵∠FDC=∠DCB,∠CFD=∠BDC=90°,
∴△CFD△BDC.
CD
BC
=
FD
CD

∴CD2=FD•BC.
∵EF=FD,CE=CD,
∴CE2=EF•BC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

半径为5的⊙O,圆心在原点O,点P(-3,4)与⊙O的位置关系是(  )
A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=2
3
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
(1)求证:AC=CD;
(2)若AC=2,AO=
5
,求OD的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(q0fq•张家口一模)如4:⊙O与AB相切于点A,BO与⊙O交于点6,∠BA6=手0°,则∠B等于(  )
A.20°B.50°C.30°D.60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,说明理由;
(2)如果AD,AB的长是方程x2-10x+24=0的两个根,试求直角边BC的长;
(3)试在(1)(2)的基础上,提出一个有价值的问题(不必解答).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点O在Rt△ABC的斜边AB上,以O为圆心,OA长为半径的⊙O切BC于点D,且分别交AC、AB于点E、F,若AC=6,BC=6
3

(1)求⊙O的半径;
(2)求弓形EDF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O的直径AB与弦AC的夹角为30°,过点C的切线PC与AB的延长线交于P.PC=5,则⊙O的半径为(  )
A.
5
3
6
B.
5
3
3
C.5D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

2006年6月某工厂将地处A,B两地的两个小工厂合成一个大厂,为了方便A,B两地职工的联系,企业准备在相距2km的A,B两地之间修一条笔直的公路(即图中的线段AB),经测量,在A地的北偏东60°方向,B地的西偏北45°方向的C处有一半径为0.7km的公园,则修筑的这条公路会不会穿过公园?为什么?

查看答案和解析>>

同步练习册答案