【题目】在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:
①连接DD',则AP垂直平分DD';
②四边形PMBN是菱形;
③AD2=DPPC;
④若AD=2DP,则;
其中正确的结论是_____(填写所有正确结论的序号)
【答案】①②③
【解析】
根据折叠的性质得出AP垂直平分DD',判断出①正确.
过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AGGB,即AD2=DPPC判断出③正确;
DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;判断出②正确;
由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得 ,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得,判断出④错误.
解:∵将△ADP沿AP翻折得到△AD'P,
∴AP垂直平分DD',故①正确;
解法一:过点P作PG⊥AB于点G,
∴易知四边形DPGA,四边形PCBG是矩形,
∴AD=PG,DP=AG,GB=PC
∵∠APB=90°,
∴∠APG+∠GPB=∠GPB+∠PBG=90°,
∴∠APG=∠PBG,
∴△APG∽△PBG,
∴,
∴PG2=AGGB,
即AD2=DPPC;
解法二:易证:△ADP∽△PCB,
∴,
由于AD=CB,
∴AD2=DPPC;故③正确;
∵DP∥AB,
∴∠DPA=∠PAM,
由题意可知:∠DPA=∠APM,
∴∠PAM=∠APM,
∵∠APB﹣∠PAM=∠APB﹣∠APM,
即∠ABP=∠MPB
∴AM=PM,PM=MB,
∴PM=MB,
又易证四边形PMBN是平行四边形,
∴四边形PMBN是菱形;故②正确;
由于,
可设DP=1,AD=2,
由(1)可知:AG=DP=1,PG=AD=2,
∵PG2=AGGB,
∴4=1GB,
∴GB=PC=4,
AB=AG+GB=5,
∵CP∥AB,
∴△PCF∽△BAF,
∴,
∴
又易证:△PCE∽△MAE,AM=AB=
∴,
∴,
∴EF=AF﹣AE=AC﹣=AC
∴,故④错误,
即:正确的有① ② ③,
故答案为:① ② ③.
科目:初中数学 来源: 题型:
【题目】如图,网格中已知△ABC三个顶点的坐标分别为(-4,3)、(-3,1)、(-1,3),按要求解决下列问题:
(1)将△ABC向右平移1个单位长度,再向下平移4个单位长度,得到,作出;
(2)将绕点O逆时针旋转90°,得到作出
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E
(1)求证:AC平分∠DAE;
(2)若AB=6,BD=2,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.
求证:(1)AC是⊙D的切线;(2)AB+EB=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平而直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是( )
A.2B.3C.4.D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.
(1)已知A(,1),B (1,﹣1),C (2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是 .
(2)设的解集在坐标系内所对应的点形成的图形为G.
①求G的面积;
②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;
(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤=b2-4ac<0中,成立的式子有( )
A. ②④⑤ B. ②③⑤
C. ①②④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,存在抛物线以及两点和.
(1)求该抛物线的顶点坐标;
(2)若该抛物线经过点,求此抛物线的表达式;
(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com