精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=a(x-1)2-与x轴交于A、B两点(点A在左边),且过点D(5,-3),顶点为M,直线MD交x轴于点F.
(1)求a的值;
(2)以AB为直径画⊙P,问:点D在⊙P上吗?为什么?
(3)直线MD与⊙P存在怎样的位置关系?请说明理由.

【答案】分析:(1)将D(5,-3)代入解析式即可求出a的值;
(2)求出⊙P的半径,计算出PD的长,与半径比较即可判断点D是否在⊙P上;
(3)由于MD经过半径的外端,通过勾股定理的逆定理判断出∠PDF=90°即可直线MD与⊙P相切.
解答:解:(1)把D(5,-3)代入y=a(x-1)2-
得:a=.(2分)

(2)y=(x-1)2-
令y=0,得:x1=-4,x2=6,
∴A(-4,0),B(6,0),
∴AB=10.(4分)
∵AB为⊙P的直径,
∴P(1,0),
∴⊙P的半径r=5(5分)
过点D作DE⊥x轴于点E,则E(5,0).
∴PE=5-1=4,DE=3,
∴PD==5,(6分)
∴PD与⊙P的半径相等,
∴点D在⊙P上.(7分)

(3)设直线MD的函数解析式为:y=kx+b(k≠0)
把M(1,-),D(5,-3)代入
得:

∴直线MD的函数解析式为:y=x-.(8分)
设直线MD与x轴交于点F,
令y=0则0=x-
得x=
∴F(,0),(9分)
∴EF=-5=
∴DF2=EF2+DE2=
PF2=(OF-OP)2=(-1)2=
DP2=25,
∴DP2+DF2=PF2
∴FD⊥DP,(11分)
又∵点D在⊙P上,
∴直线MD与⊙P相切.(12分)
点评:此题是一道结论开放性题目,考查了点和圆的位置关系、直线和圆的位置关系,通过函数解析式求出相应点的坐标及线段的长,是解答此题的必要环节.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案