精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值.
分析:易证得△AEF∽△ABC,而AH、AD是两个三角形的对应高,EF、BC是对应边,则AH:AD=EF:BC,由此得证;要转化为函数的最值问题来求解;由AH=
4
5
x,进而可得到HD(即FP)的表达式;已求得了矩形的长和宽,即可根据矩形的面积公式得到关于矩形EFPQ的面积和x的函数关系式,根据函数的性质即可得到矩形的最大面积及对应的x的值.
解答:解:∵四边形EFPQ是矩形,
∴EF∥QP
∴△AEF∽△ABC
又∵AD⊥BC,
∴AH⊥EF;
∴AH:AD=EF:BC;
∵BC=10,高AD=8,
∴AH:8=x:10,
∴AH=
4
5
x
∴EQ=HD=AD-AH=8-
4
5
x,
∴S矩形EFPQ=EF•EQ=x(8-
4
5
x)=-
4
5
x2+8x=-
4
5
(x-5)2+20,
∵-
4
5
<0,
∴当x=5时,S矩形EFPQ有最大值,最大值为20.
点评:本题主要考查了矩形、等腰直角三角形的性质,相似三角形的判定和性质及二次函数的应用等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案