精英家教网 > 初中数学 > 题目详情
如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
(1)证明:连接OA。

∵∠B=60°,∴∠AOC=2∠B=120°。
又∵OA=OC,∴∠ACP=∠CAO=30°。∴∠AOP=60°。
∵AP=AC,∴∠P=∠ACP=30°。∴∠OAP=90°。∴OA⊥AP。
∴AP是⊙O的切线。
(2)解:连接AD。
∵CD是⊙O的直径,∴∠CAD=90°。∴AD=AC•tan30°=3×
∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°。
∴∠P=∠PAD。∴PD=AD=
(1)连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线。
(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题


在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.

(1)求AC所在直线的函数解析式;
(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;
(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


小题1:计算
小题2:如图3,已知线段,请用直尺和圆规作出线段的垂直平分线.

小题3:如图4,已知.求证:.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△ABC中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=【   】。
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:等腰△ABC中,AB=AC=13,BC=10,求底角∠B的正弦、余弦、正切值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知:,则下列各式成立的是
A.sinA=cosAB.sinA>cosA
C.sinA>tanAD.sinA<cosA

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图, 在直角坐标平面上, 点在第三象限, 点在第四象限, 线段轴于点. ,, 设, 求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

实践应用(本小题满分6分)
江苏省第八届园博会于2013年在我市举行,宣传部门在一幢大楼(DE)的顶部竖有一块“江魂秘境,水韵方舟”的宣传牌CD,其宽度为2m,小明在平地上的A处,测得宣传牌的底部D的仰角为60°;又沿着EA的方向前进了22m到B处,测得宣传牌的底部D的仰角为45°(A、E之间有一条河),求这幢大楼DE的高度.(测角器的高度忽略不计,结果精确到0.1m.参考数据:1.414,1.732)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

同步练习册答案