精英家教网 > 初中数学 > 题目详情
一次函数y=﹣x+1与x轴,y轴所围成的三角形的面积是  

试题分析:当x=0时,求出与y轴的交点坐标;当y=0时,求出与x轴的交点坐标;然后即可求出一次函数y=﹣x+1与坐标轴围成的三角形面积.
解:当x=0时,y=1,与y轴的交点坐标为(0,1);
当y=0时,x=1,与x轴的点坐标为(1,0);
则三角形的面积为×1×1=
故答案为
点评:本题考查了一次函数图象上点的坐标特征,求出与x轴的交点坐标、与y轴的交点坐标是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.
(1)直接写出a,m,n的值;
(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);
(3)当两车相距120千米时,乙车行驶了多长时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点A、B分别在一次函数y=x,y=8x,的图像上,其横坐标分别为a、b(a>0,b>O).若直线AB为一次函数y=kx+m,的图像,则当是整数时,满足条件的整数k的值共有        个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A’B’C’(A和A’,B和B’,C和C’分别是对应顶点),直线经过点A,C’,则点C’的坐标是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果一个正比例函数的图象与一个反比例函数的图象交,那么值为       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,则m的取值范围是
A.m>0B.m<0C.m>2D.m<2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线AB分别与x轴,y轴相交于A,B两点,OA,OB的长分别是方程x2﹣14x+48=0的两根,且OA<OB.

(1)求点A,B的坐标.
(2)过点A作直线AC交y轴于点C,∠1是直线AC与x轴相交所成的锐角,sin∠1=,点D在线段CA的延长线上,且AD=AB,若反比例函数的图象经过点D,求k的值.
(3)在(2)的条件下,点M在射线AD上,平面内是否存在点N,使以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂(    )
A.1月至3月每月产量逐月增加,4、5两月产量逐月减小
B.1月至3月每月产量逐月增加,4、5两月产量与3月持平
C.1月至3月每月产量逐月增加,4、5两月产量均停止生产
D.1月至3月每月产量不变, 4、5两月均停止生产

查看答案和解析>>

同步练习册答案