精英家教网 > 初中数学 > 题目详情
若n是正整数,下列代数式中,哪一个代数式的值一定不是某个自然数的平方(  )
分析:分别将各选项提取公因式,然后运用特殊值判断法判断两因式是相乘后是否可以为一个数的平方,从而可得出答案.
解答:解:A、3n2-3n+3=3(n2-n+1),则当n2-n+1=3时,即n=2时可使3n2-3n+3为3的平方,故本选项错误.
B、4n2+4n+4=22(n2+n+1),则只有n2+n+1是完全平方式时才能满足4n2+4n+4是一个数的平方,而n2+n+1不是完全平方式,故本选项正确;
C、5n2-5n-5=5(n2-n-1),则当n2-n-1=5时,即n=3时可使5n2-5n-5为5的平方,故本选项错误;
D、7n2-7n+7=7(n2-n+1),则当n2-n+1=7时,即n=3时可使7n2-7n+7为7的平方,故本选项错误.
综上可得选项B正确.
故选B.
点评:此题考查了完全平方数的知识,有一定的难度,如果一个整式提取的公因数是完全平方数,则要使这个因式可以为一个数的平方,则这个剩余的因式一定是完全平方式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后解答后面的问题:
我们知道二元一次方程组
2x+3y=12
3x-3y=6
的求解方法是消元法,即可将它化为一元一次方程来解,可求得方程组
2x+3y=12
3x-3y=6
有唯一解.
我们也知道二元一次方程2x+3y=12的解有无数个,而在实际问题中我们往往只需要求出其正整数解.
下面是求二元一次方程2x+3y=12的正整数解的过程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y为正整数,∴
x>0
12-2x>0
则有0<x<6
又y=4-
2
3
x
为正整数,则
2
3
x
为正整数,所以x为3的倍数
又因为0<x<6,从而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整数解为
x=3
y=2

问题:(1)若 
6
x-2
为正整数,则满足条件的x的值有几个.(  )
A、2    B、3    C、4   D、5
      (2)九年级某班为了奖励学习进步的学生,花费35元购买了笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?
      (3)试求方程组
2x+y+z=10
3x+y-z=12
 的正整数解.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省南京市高淳县中考数学二模试卷(解析版) 题型:解答题

阅读下列材料,然后解答后面的问题:
我们知道二元一次方程组的求解方法是消元法,即可将它化为一元一次方程来解,可求得方程组有唯一解.
我们也知道二元一次方程2x+3y=12的解有无数个,而在实际问题中我们往往只需要求出其正整数解.
下面是求二元一次方程2x+3y=12的正整数解的过程:
由2x+3y=12得:y=
∵x、y为正整数,∴则有0<x<6
又y=4-为正整数,则为正整数,所以x为3的倍数
又因为0<x<6,从而x=3,代入:y=4-=2
∴2x+3y=12的正整数解为
问题:(1)若 为正整数,则满足条件的x的值有几个.( )
A、2    B、3    C、4   D、5
      (2)九年级某班为了奖励学习进步的学生,花费35元购买了笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?
      (3)试求方程组 的正整数解.

查看答案和解析>>

同步练习册答案