Èçͼ£¬Rt¡÷AOBµÄÁ½Ö±½Ç±ßOB¡¢OA·Ö±ðλÓÚxÖá¡¢yÖáÉÏ£¬OA=6£¬OB=8£®

£¨1£©Èçͼ1£¬½«¡÷AOBÕÛµþ£¬µãBÇ¡ºÃÂäÔÚµãO´¦£¬ÕÛºÛΪCD1£¬Çó³öD1µÄ×ø±ê£»
£¨2£©Èçͼ2£¬½«¡÷AOBÕÛµþ£¬µãOÇ¡ºÃÂäÔÚAB±ßÉϵĵãC´¦£¬ÕÛºÛΪAD2£¬Çó³öD2µÄ×ø±ê£»
£¨3£©Èçͼ3£¬½«¡÷AOBÕÛµþ£¬µãOÂäÔÚ¡÷AOBÄڵĵãC´¦£¬OD3=2£¬ÕÛºÛΪAD3£¬AD3ÓëOC½»ÓÚµãE£¬Çó³öµãCµÄºá×ø±ê£®
·ÖÎö£º£¨1£©¸ù¾ÝÕÛµþµÄÐÔÖʿɵÃOD1=BD1£¬È»ºóÇó³öOD1£¬ÔÙд³öµãD1µÄ×ø±ê¼´¿É£»
£¨2£©ÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAB£¬ÔÙ¸ù¾ÝÕÛµþµÄÐÔÖʿɵÃAC=OA£¬OD2=CD2£¬È»ºó±íʾ³öBC£¬ÉèOD2=x£¬±íʾ³öBD2£¬ÔÚRt¡÷BCD2ÖУ¬ÀûÓù´¹É¶¨ÀíÁгö·½³ÌÇó³öx£¬ÔÙд³öµãD1µÄ×ø±ê£»
£¨3£©ÔÚRt¡÷AOD3ÖУ¬ÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAD3£¬¸ù¾Ý·­ÕÛµÄÐÔÖʿɵÃOE¡ÍAD3ÇÒOC=2OE£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ýÇó³öOEµÄ³¤£¬´Ó¶øµÃµ½OCµÄ³¤£¬¹ýµãC×÷CF¡ÍxÖáÓÚF£¬È»ºóÇó³ö¡÷AOD3ºÍ¡÷OFCÏàËÆ£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó³öOF¡¢CF£¬ÔÙ¸ù¾ÝµãCÔÚµÚÒ»ÏóÏÞд³ö×ø±ê¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÕÛµþµÄÐÔÖʵã¬OD1=BD1£¬
ËùÒÔ£¬OD1=
1
2
OB=
1
2
¡Á8=4£¬
ËùÒÔµãD1£¨4£¬0£©£»

£¨2£©¡ßOA=6£¬OB=8£¬
¡àAB=
OA2+OB2
=
62+82
=10£¬
ÓÉÕÛµþµÄÐÔÖʵã¬AC=OA=6£¬OD2=CD2£¬
¡àBC=AB-AC=10-6=4£¬
ÉèOD2=x£¬ÔòBD2=8-x£¬
ÔÚRt¡÷BCD2ÖУ¬CD22+BC2=BD22£¬
¼´x2+42=£¨8-x£©2£¬
½âµÃx=3£¬
¡àµãD2µÄ×ø±êΪ£¨3£¬0£©£»

£¨3£©ÔÚRt¡÷AOD3ÖУ¬AD3=
OA2+OD32
=
62+22
=2
10
£¬
ÓÉ·­ÕÛµÄÐÔÖʵã¬OE¡ÍAD3ÇÒOC=2OE£¬
S¡÷AOD3=
1
2
AD3•OE=
1
2
OA•OD3£¬
¡à
1
2
¡Á2
10
OE=
1
2
¡Á6¡Á2£¬
½âµÃOE=
3
10
5
£¬
¡àOC=2¡Á
3
10
5
=
6
10
5
£¬
¹ýµãC×÷CF¡ÍxÖáÓÚF£¬
¡ß¡ÏCOF+¡ÏAD3O=180¡ã-90¡ã=90¡ã£¬
¡ÏAD3O+¡ÏOAD3=90¡ã£¬
¡à¡ÏOAD3=¡ÏCOF£¬
ÓÖ¡ß¡ÏAOD3=¡ÏOFC=90¡ã£¬
¡à¡÷AOD3¡×¡÷OFC£¬
¡à
OF
OA
=
CF
OD3
=
OC
AD3
£¬
¼´
OF
6
=
CF
2
=
6
10
5
2
10
=
3
5
£¬
½âµÃOF=
18
5
£¬CF=
6
5
£¬
ËùÒÔ£¬µãCµÄ×ø±êΪ£¨
18
5
£¬
6
5
£©£®
µãÆÀ£º±¾Ì⿼²éÁË·­Õ۱任µÄÐÔÖÊ£¬×ø±êÓëͼÐÎÐÔÖÊ£¬Ö÷ÒªÀûÓÃÁ˹´¹É¶¨Àí£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬´ËÀàÌâÄ¿£¬Êì¼Ç¸÷ÐÔÖʲ¢¸ù¾Ý¹´¹É¶¨ÀíÁгö·½³ÌÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢Èçͼ£¬Rt¡÷AOBµÄб±ßOAÔÚyÖáÉÏ£¬ÇÒOA=5£¬OB=4£®½«Rt¡÷AOBÈÆÔ­µãOÄæʱÕëÐýתһ¶¨µÄ½Ç¶È£¬Ê¹Ö±½Ç±ßOBÂäÔÚxÖáµÄ¸º°ëÖáÉϵõ½ÏàÓ¦µÄRt¡÷A¡äOB¡ä£¬ÔòA¡äµãµÄ×ø±êÊÇ
£¨-4£¬3£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Rt¡÷AOBµÄ¶¥µãAÊÇÒ»´Îº¯Êýy=-x+£¨k+1£©µÄͼÏóÓë·´±ÈÀýº¯Êýy=
k
x
µÄͼÏóÔÚµÚËÄÏóÏ޵Ľ»µã£¬AB´¹Ö±xÖáÓÚB£¬ÇÒS¡÷AOB=
3
2
£®
£¨1£©ÇóÕâÁ½¸öº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çó³öËüÃǵĽ»µãA¡¢CµÄ×ø±êºÍ¡÷AOCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2004•Ì©°²£©Èçͼ£¬Rt¡÷AOBµÄÁ½Ö±½Ç±ßOA¡¢OBµÄ³¤·Ö±ðÊÇ1ºÍ3£¬½«¡÷AOBÈÆOµã°´ÄæʱÕë·½ÏòÐýת90¡ã£¬ÖÁ¡÷DOCµÄλÖã®
£¨1£©Çó¹ýC¡¢B¡¢AÈýµãµÄ¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Èô£¨1£©ÖÐÅ×ÎïÏߵĶ¥µãÊÇM£¬Åж¨¡÷MDCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Rt¡÷AOBµÄÁ½Ö±½Ç±ßOA£¬OB·Ö±ðÔÚxÖáµÄ¸º°ëÖáºÍyÖáµÄÕý°ëÖáÉÏ£¬OΪ×ø±êÔ­µã£¬A£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©£®£¨0£¬4£©£¬Å×ÎïÏßy=
2
3
x2+bx+c¾­¹ýµãB£¬µãM£¨
5
2
£¬
3
2
£©ÊǸÃÅ×ÎïÏ߶ԳÆÖáÉϵÄÒ»µã£®
£¨1£©b=
-
10
3
-
10
3
£¬c=
4
4
£»
£¨2£©Èô°Ñ¡÷AOBÑØxÖáÏòÓÒƽÒƵõ½¡÷DCE£¬µãA£¬B£¬OµÄ¶ÔÓ¦µã·Ö±ðΪD£¬C£¬E£¬µ±ËıßÐÎABCDÊÇÁâÐÎʱ£¬ÊÔÅжϵãCºÍµãDÊÇ·ñÔÚ¸ÃÅ×ÎïÏßÉÏ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Á¬½ÓBD£®ÈôµãPÊÇÏ߶ÎOBÉϵÄÒ»¸ö¶¯µã£¨µãPÓëµãO£¬B²»Öغϣ©£¬¹ýµãP×÷PQ¡ÎBD½»xÖáÓÚµãQ£¬Á¬½ÓPM£¬QM£®ÉèOPµÄ³¤Îªt£¬¡÷PMQµÄÃæ»ýΪS£®
¢Ùµ±tΪºÎֵʱ£¬µãQ£¬M£¬CÈýµã¹²Ïߣ»
¢ÚÇóSÓëtµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ö×Ô±äÁ¿tµÄÈ¡Öµ·¶Î§£®SÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³ö×î´óÖµºÍ´ËʱµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸