精英家教网 > 初中数学 > 题目详情
(2013•德阳)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为(  )
分析:过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.
解答:解:过A作AD⊥BC,垂足为D.
在Rt△ABD中,∵∠BAD=30°,AD=120m,
∴BD=AD•tan30°=120×
3
3
=40
3
m,
在Rt△ACD中,∵∠CAD=60°,AD=120m,
∴CD=AD•tan60°=120×
3
=120
3
m,
∴BC=BD+CD=40
3
+120
3
=160
3
m.
故选D.
点评:本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•德阳)如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,则∠EOD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德阳)如图,在?ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=4
2
,则△CEF的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为
5
2
,tan∠ABC=
3
4
,则CQ的最大值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德阳)如图,直线y=kx+k(k≠0)与双曲线y=
n+1
x
交于C、D两点,与x轴交于点A.
(1)求n的取值范围和点A的坐标;
(2)过点C作CB⊥y轴,垂足为B,若S△ABC=4,求双曲线的解析式;
(3)在(1)(2)的条件下,若AB=
17
,求点C和点D的坐标,并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围.

查看答案和解析>>

同步练习册答案