精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2-2x与直线y=3相交于点A、B,P是x轴上一点,若PA+PB最小,则点P的坐标为(  )
A.(-l,0)B.(0,0)C.(1,0)D.(3,0)

如图,作点B关于x轴的对称点B′,连接AB′与x轴的交点即为点P.
当y=3时代入到抛物线解析式得:
x2-2x-3=0,
解得x=3或x=-1.
则由图可知点A(-1,3),点B(3,3),
∴B′(3,-3).
设直线AB′的解析式为:y=kx+b.
代入A,B′求得:y=-
3
2
x+
3
2

则该直线与x轴的交点为:当y=0时,x=1.
∴点P(1,0).
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2ax+c-1的顶点在直线y=-
8
3
x+8
上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α22=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HKPB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,抛物线y=
4
9
x2+
2
9
mx+
5
9
m+
4
3
与x轴交于A,B两点,已知点A在x轴的负半轴上,点B在x轴的正半轴上,且BO=2AO,点C为抛物线的顶点.
(1)求此抛物线的解析式和经过B,C两点的直线的解析式;
(2)点P在此抛物线的对称轴上,且⊙P与x轴、直线BC都相切.求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两条抛物线y1=-
1
2
x2+1,y2=-
1
2
x2-1
与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为(  )
A.8B.6C.10D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.
(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)之间的函数关系式;
(2)若商场要想每天获得最大销售利润,每件商品的售价定为什么最合适?最大销售利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设∠ACC′=α(30°<α<90°(图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.

查看答案和解析>>

同步练习册答案