7£®Èçͼ£¬Å×ÎïÏßy=a£¨x-1£©2+k¹ý×ø±êÔ­µã£¬¶¥µãΪB£¬½»xÖáÓÚÁíÒ»µãA£¬ÇÒ¡÷OABΪµÈÑüÖ±½ÇÈý½ÇÐΣ®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôMΪyÖḺ°ëÖáÉÏÒ»µã£¬¹ýµãM·Ö±ð×÷Ö±ÏßMC£¬MD£¬ÇÒMC£¬MD¶¼ÓëÅ×ÎïÏßÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬µãC£¬D¾ùÔÚÅ×ÎïÏßÉÏ£®
¢Ù̽¾¿£ºÈôMµãµÄ×ø±êΪ£¨0£¬-1£©£¬ÇóNµãµÄ×ø±ê£»
¢Ú²ÂÏ룺µ±MµãÔÚyÖḺ°ëÖáÉÏÔ˶¯Ê±£¬Ï߶ÎOMÓëONÏàµÈÂð£¿ÊÔÈ¡M£¨0£¬-t2£©Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖªB£¨1£¬-1£©£¬A£¨2£¬0£©£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©¢ÙÉè¹ýµãMµÄÖ±ÏߵĽâÎöʽΪy=kx-1£¬ÓÉ$\left\{\begin{array}{l}{y=kx-1}\\{y={x}^{2}-2x}\end{array}\right.$ÏûÈ¥yµÃµ½x2-£¨2+k£©x+1=0£¬¸ù¾Ý¡÷=0ʱÇóµÃk=-4»ò0£¬ÔÙÇó³öC¡¢DÁ½µã×ø±ê¼´¿É½â¾öÎÊÌ⣮
¢Ú½áÂÛ£ºOM=ON£®ÉèM£¨0£¬-t2£©£¬¹ýµãMµÄÖ±ÏߵĽâÎöʽΪy=kx-t2£¬ÓÉ$\left\{\begin{array}{l}{y=kx-{t}^{2}}\\{y={x}^{2}-2x}\end{array}\right.$ÏûÈ¥yµÃµ½x2-£¨2+k£©x+t2=0£¬ÓÉÌâÒâ¡÷=0ʱ£¬£¨2+k£©2-4t2=0£¬
½âµÃk=2t-2»ò-2t-2£¬ÔÙÇó³öC¡¢DÁ½µã×ø±ê£¬¸ù¾Ý¶Ô³ÆÐÔ¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=a£¨x-1£©2+k¹ý×ø±êÔ­µã£¬¶¥µãΪB£¬½»xÖáÓÚÁíÒ»µãA£¬ÇÒ¡÷OABΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡à¶Ô³ÆÖáx=1£¬A£¨2£¬0£©£¬B£¨1£¬-1£©£¬
¡àk=-1£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-1£©2-1£¬°ÑA£¨2£¬0£©´úÈëµÃa=1£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-2x£®

£¨2£©¢ÙÉè¹ýµãMµÄÖ±ÏߵĽâÎöʽΪy=kx-1£¬
ÓÉ$\left\{\begin{array}{l}{y=kx-1}\\{y={x}^{2}-2x}\end{array}\right.$£¬ÏûÈ¥yµÃµ½x2-£¨2+k£©x+1=0£¬
ÓÉÌâÒâ¡÷=0ʱ£¬£¨2+k£©2-4=0£¬½âµÃk=-4»ò0£¬
k=-4ʱ£¬ÓÉ$\left\{\begin{array}{l}{y=-4x-1}\\{y={x}^{2}-2x}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$£¬
¡àC£¨-1£¬3£©£¬
k=0ʱ£¬Ö±ÏßDM¡ÎxÖᣬD£¨1£¬-1£©£¬
¡ßC£¨-1£¬3£©£¬D£¨1£¬-1£©£¬
¡àµãNÊÇÏ߶ÎCDµÄÖе㣬N£¨0£¬1£©£®

¢Ú½áÂÛ£ºOM=ON£®
ÀíÓÉ£ºÉèM£¨0£¬-t2£©£¬¹ýµãMµÄÖ±ÏߵĽâÎöʽΪy=kx-t2£¬
ÓÉ$\left\{\begin{array}{l}{y=kx-{t}^{2}}\\{y={x}^{2}-2x}\end{array}\right.$ÏûÈ¥yµÃµ½x2-£¨2+k£©x+t2=0£¬
ÓÉÌâÒâ¡÷=0ʱ£¬£¨2+k£©2-4t2=0£¬
½âµÃk=2t-2»ò-2t-2£¬
ÓÉ$\left\{\begin{array}{l}{y=£¨2t-2£©x-{t}^{2}}\\{y={x}^{2}-2x}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}-2t}\end{array}\right.$£¬
ÓÉ$\left\{\begin{array}{l}{y=£¨-2t-2£©x-{t}^{2}}\\{y={x}^{2}-2x}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-t}\\{y={t}^{2}+2t}\end{array}\right.$£¬
²»·ÁÉèC£¨t£¬t2-2t£©£¬D£¨-t£¬t2+2t£©£¬
¡ßC¡¢DÁ½µãµÄºá×ø±ê»¥ÎªÏà·´Êý£¬
¡àNC=ND£¬
¡àN£¨0£¬t2£©£¬
¡àOM=ON=t2£¬
¡àOM=ON£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦ÓᢶþÔª¶þ´Î·½³Ì×飬һԪ¶þ´Î·½³ÌµÄ¸ùµÄÅбðʽµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇ°ÑÁ½¸öº¯ÊýͼÏóµÄ½»µãÎÊÌ⣬ת»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄ¸öÊýÎÊÌ⣬ÀûÓøùµÄÅбðʽ½â¾ö½»µã¸öÊýÎÊÌ⣬ѧ»áÀûÓòÎÊý½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚ¡÷ABCÖУ¬DE´¹Ö±Æ½·ÖAC½»ABÓÚµãE£¬¡ÏA=30¡ã£¬¡ÏBCE=50¡ã£¬Ôò¡ÏB=£¨¡¡¡¡£©
A£®60¡ãB£®70¡ãC£®80¡ãD£®50¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãOΪ×ø±êÔ­µã£¬¾ØÐÎOABCµÄ±ßOA£¬OC·Ö±ðÔÚxÖáºÍyÖáÉÏ£¬ÆäÖÐOA=6£¬OC=3£®ÒÑÖª·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏó¾­¹ýBC±ßÉϵÄÖеãD£¬½»ABÓÚµãE£®
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ±í´ïʽ£»
£¨2£©²ÂÏë¡÷OCDµÄÃæ»ýÓë¡÷OBEµÄÃæ»ýÖ®¼äµÄ¹Øϵ£¬²¢Ð´³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èç¹û-2xmy3Óë$\frac{1}{2}$x2ynÊÇͬÀàÏÄÇôm-nµÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼ÆËãÌ⣺
£¨1£©-5+£¨+21£©-£¨-79£©-15
£¨2£©2£¨m-3n£©-£¨-3m-2n£©
£¨3£©-£¨$\frac{5}{9}$-$\frac{3}{4}$+$\frac{1}{18}$£©¡Â$\frac{1}{36}$
£¨4£©-$\frac{2}{3}$¡Â[-32¡Á£¨-$\frac{2}{3}$£©2+2]¡Á£¨-1£©2016£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚ¡÷ABCºÍ¡÷DEFÖУ¬¡ÏB=¡ÏDEF£¬AB=DE£¬Ìí¼ÓÏÂÁÐÒ»¸öÌõ¼þºó£¬ÈÔÈ»²»ÄÜÖ¤Ã÷¡÷ABC¡Õ¡÷DEF£¬Õâ¸öÌõ¼þÊÇ£¨¡¡¡¡£©
A£®¡ÏA=¡ÏDB£®BE=FCC£®¡ÏACB=¡ÏFD£®AC=DF

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬Ôڱ߳¤Îª1µÄÕý·½ÐÎ×é³ÉµÄÍø¸ñÖУ¬¡÷AOBµÄ¶¥µã¾ùÔÚ¸ñµãÉÏ£¬µãA¡¢BµÄ×ø±ê·Ö±ðÊÇA£¨3£¬2£©£¬B£¨1£¬3£©£¬¡÷AOB¹ØÓÚyÖá¶Ô³ÆµÄͼÐÎΪ¡÷A1OB1£®
£¨1£©»­³ö¡÷A1OB1²¢Ð´³öµãB1µÄ×ø±êΪ£¨-1£¬3£©£»
£¨2£©Ð´³ö¡÷A1OB1µÄÃæ»ýΪ3.5£»
£¨3£©µãPÔÚxÖáÉÏ£¬Ê¹¡÷POBÊǵÈÑüÈý½ÇÐΣ¬Âú×ãÌõ¼þµÄµãP¹²ÓÐ4¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®£¨1£©12-£¨-18£©+£¨-7£©-15
£¨2£©-22+3¡Á£¨-1£©4-£¨-4£©¡Á5
£¨3£©3x2+6x+5-4x2+7x-6
£¨4£©5£¨3a2b-ab2£©-£¨ab2+3a2b£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚͼ¢ÙËù±ê×¢µÄ6¸ö½ÇÖй²ÓУ¬1¶Ôͬλ½Ç£¬3¶ÔÄÚ´í½Ç£¬4¶ÔͬÅÔÄڽǣ¬ÔÚͼ¢ÚÖй²ÓÐ3¶ÔͬÅÔÄڽǣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸