精英家教网 > 初中数学 > 题目详情

如图11,在梯形ABCD中,AD∥BC,E为BC上一点,DE∥AB,AD的长为1,BC的长为2,则CE的长为___________.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图11所示,在梯形ABCD中,已知ABCDADDBAD=DC=CBAB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.

(1)求∠DAB的度数及ADC三点的坐标;

(2)求过ADC三点的抛物线的解析式及其对称轴L

(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFHHFDE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,DEF=∠CBAAHAC=2∶3

(1)延长HFABG,求△AHG的面积.

(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图12).

探究1:在运动中,四边形CDH′H能否为正方形?若能, 请求出此时t的值;若不能,请说明理由.

探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求yt的函数关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图11,在直角梯形ABCD中,已知ADBCAB=3,AD=1,BC=6,∠A=∠B=90°. 设动点PQR在梯形的边上,始终构成以P为直角顶点的等腰直角三角形,且△PQR的一边与梯形ABCD的两底平行.

(1) 当点PAB边上时,在图中画出一个符合条件的△PQR (不必说明画法);

(2) 当点PBC边或CD边上时,求BP的长.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

如图11,在直角梯形ABCD中,已知ADBCAB=3,AD=1,BC=6,∠A=∠B=90°. 设动点PQR在梯形的边上,始终构成以P为直角顶点的等腰直角三角形,且△PQR的一边与梯形ABCD的两底平行.

(1) 当点PAB边上时,在图中画出一个符合条件的△PQR (不必说明画法);

(2) 当点PBC边或CD边上时,求BP的长.

 


查看答案和解析>>

同步练习册答案