精英家教网 > 初中数学 > 题目详情
精英家教网如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.
(1)求N点、M点的坐标;
(2)将抛物线y=x2-36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;
(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;
②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
分析:(1)根据折叠的性质知:BC=CN=OA,由此可在Rt△OCN中用勾股定理求出ON的长(由此可求出N点的坐标),即可得到NA的值;在Rt△AMN中,用AM表示出MN、BM的值,然后由勾股定理即可求出AM的长,也就得到了M点的坐标;
(2)用a表示出抛物线l的解析式,然后将N点坐标代入其中,即可求出抛物线l的解析式;
(3)①此题的关键是确定P点的位置,若PM-PN最大,那么P点必为直线MN与抛物线对称轴的交点(可由三角形三边关系定理推出),可用待定系数法求出直线MN的解析式,联立抛物线的对称轴方程,即可得到P点的坐标;
②由于DE∥ON,易证得△CDE∽△CON,根据相似三角形得到的比例线段即可求出DE的表达式,以DE为底,P、D纵坐标差的绝对值为高即可得到△DEP的面积,由此可求出关于S、m的函数关系式,根据所得函数的性质及自变量的取值范围即可求出S的最大值及对应的m的值.
解答:精英家教网解:如图
(1)∵CN=CB=15,OC=9,
∴ON=
152-92
=12,
∴N(12,0);
又∵AN=OA-ON=15-12=3,
设AM=x
∴32+x2=(9-x)2
∴解得:x=4,M(15,4);

(2)解法一:设抛物线l为y=(x-a)2-36
则(12-a)2=36
∴a1=6或a2=18(舍去)
∴抛物线l:y=(x-6)2-36
解法二:
∵x2-36=0,
∴x1=-6,x2=6;
∴y=x2-36与x轴的交点为(-6,0)或(6,0)
由题意知,交点(6,0)向右平移6个单位到N点,
所以y=x2-36向右平移6个单位得到抛物线l:y=(x-6)2-36=x2-12x;

(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,
设直线MN的解析式为y=kx+b(k≠0),
12k+b=0
15k+b=4

解得
k=
4
3
b=-16

∴y=
4
3
x-16,
∴P(6,-8);
②∵DE∥OA,
∴△CDE∽△CON,
m
9
=
DE
12
DE=
4
3
m

∴S=
1
2
×
4
3
m×(9+8-m)=-
2
3
m2+
34
3
m

∵a=-
2
3
<0,开口向下,又m=-
34
3
2×(-
2
3
)
=
34×3
3×4
=
17
2
<9

∴S有最大值,且S最大=-
2
3
×(
17
2
)
2
+
34
3
×
17
2
=
289
6
点评:此题考查了勾股定理、二次函数解析式的确定、函数图象的平移、图形面积的求法、三角形三边关系定理以及相似三角形的判定和性质,综合性强,难度偏大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形OABC为直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运精英家教网动.过点N作NP⊥OA于点P,连接AC交NP于Q,连接MQ. 
(1)点
 
(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片.点O与坐标原点重合,点A在x轴上,点C在y轴上,OC=4,点E为BC的中点,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落精英家教网在MN上,并与MN上的点G重合,折痕为EF,点F为折痕与y轴的交点.
(1)求点G的坐标;
(2)求折痕EF所在直线的解析式;
(3)设点P为直线EF上的点,是否存在这样的点P,使得以P,F,G为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形OABC为正方形,点A在x轴上,点C在y轴上,点B(8,8),点P在边OC上,点M在边AB上.把四边形OAMP沿PM对折,PM为折痕,使点O落在BC边上的点Q处.动点E从点O出发,沿OA边以每秒1个单位长度的速度向终点A运动,运动时间为t,同时动点F从点O出发,沿OC边以相同的速度向终点C运动,当点E到达点A时,E、F同时停止运动.
(1)若点Q为线段BC边中点,直接写出点P、点M的坐标;
(2)在(1)的条件下,设△OEF与四边形OAMP重叠面积为S,求S与t的函数关系式;
(3)在(1)的条件下,在正方形OABC边上,是否存在点H,使△PMH为等腰三角形,若存在,求出点H的坐标,若不存在,请说明理由;
(4)若点Q为线段BC上任一点(不与点B、C重合),△BNQ的周长是否发生变化,若不发生变化,求出其值,若发生变化,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼伦贝尔)如图,四边形OABC是边长为2的正方形,反比例函数y=
k
x
的图象过点B,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:如图,四边形OABC为直角梯形,已知AB∥OC,BC⊥OC,A点坐标为(3,4),AB=6,若动点P沿着O→A→B→C的方向运动(不包括O点和C点),P点运动路程为S,下列语句中正确的个数精英家教网是(  )
(1)直线OA的函数解析式为y=
4
3
x

(2)梯形OABC的周长为24;
(3)若点P在线段AB上时,P点的坐标为(S-5,4)
(4)若点P在线段BC上时,P点的坐标为(9,15-S)
A、1个B、2个C、3个D、4个

查看答案和解析>>

同步练习册答案