精英家教网 > 初中数学 > 题目详情

24.(本小题满分14分)

如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。

(1)若AG=AE,证明:AF=AH;

(2)若∠FAH=45°,证明:AG+AE=FH;

(3)若RtΔGBF的周长为1,求矩形EPHD的面积。

解:(1)易证ΔABF≌ΔADH,所以AF=AH

(2)如图,将ΔADH绕点A顺时针旋转90度,如图,易证ΔAFH≌ΔAFM,得FH=MB+BF,即:FH=AG+AE

(3)设PE=x,PH=y,易得BG=1-x,BF=1-y,FG=x+y-1,由勾股定理,得

(1-x)2+(1-y)2=( x+y-1)2,

化简得xy=0.5,

所以矩形EPHD的面积为0.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25.(本小题满分14分)

如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+mm为常数)

经过点(0,4).

(1)       求m的值;

(2)       将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.

① 试求平移后的抛物线的解析式;

② 试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分14分)
已知:如图,抛物线与y轴交于点C(0,), 与x轴交于点A、 B,点A的坐标为(2,0).

(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(,0).问:是否存在这样的直线,使得△OMF是等腰三角形?若存  在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年广东省萝岗区初中毕业班综合测试数学卷 题型:解答题

(本小题满分14分)
如图1,抛物线y轴交于点AE(0,b)为y轴上一动点,过点E的直线与抛物线交于点BC.
 
【小题1】(1)求点A的坐标;
【小题2】(2)当b=0时(如图2),求的面积。
【小题3】(3)当时,的面积大小关系如何?为什么?
【小题4】(4)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(内蒙古赤峰卷)数学 题型:解答题

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+mm为常数)

经过点(0,4).

(1)       求m的值;

(2)       将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.

①  试求平移后的抛物线的解析式;

②  试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案