精英家教网 > 初中数学 > 题目详情
如图是一个形如正六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,…,依此类推.
(1)填写下表:
层数 1 2 3 4
该层对应的点数 1 6 12 18
所有层的总点数 1
7
7
19
19
37
37
(2)写出第n层所对应的点数(n≥2);
(3)写出n层的正六边形点阵的总点数(n≥2);
(4)如果点阵中所有层的总点数为331,请求出它共有几层?
分析:(1)观察点阵可以写出答案;
(2)观察可知,从第二层开始,每增加一层就增加六个点;
(3)将每一层的点数相加后即可得到答案.
(4)将331代入后解方程即可.
解答:解:(1)如表:

(2)第一层上的点数为1;
第二层上的点数为6=1×6;
第三层上的点数为6+6=2×6;
第四层上的点数为6+6+6=3×6;
…;
第n层上的点数为(n-1)×6=6n-6.

(3)第二层开始,每增加一层就增加六个点,即n层六边形点阵的总点数为,
1+1×6+2×6+3×6+…+(n-1)×6,
=1+6[1+2+3+4+…+(n-1)],
=1+6×
n(n-1)
2

=1+3n(n-1).
第n层六边形的点阵的总点数为:1+3n(n-1)=3n2-3n+1.

(4)令3n2-3n+1=331
解得:n=-10(舍去)或n=11
答:共有11层.
点评:本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、正方体是特殊的长方体,又称“立方体”、“正六面体”.
(1)正方体是由
6
个面围成的,它有
8
个顶点,
12
条棱
(2)用一个平面去截一个正方体,截面可能是几边形?(写出所有可能的情况)
(3)如图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数.请你画出这个几何体的主视图、左视图.

查看答案和解析>>

科目:初中数学 来源: 题型:

课题:探究能拼成正多边形的三角形的面积计算公式.
实验:
(1)如图1,三角形的三边长分别为a、b、c,∠A=60°,现将六个这样的三角形(设面积为S6)拼成一个六边形,由于大六边形三个角都是∠B+∠C=120°,所以由a边围成了一个大的正六边形,其面积可计算出为
 
;由于所围成的小六边形的边长都是
 
,其面积为
 
,由此可得S6=
 

(2)如图2,三角形的三边长分别为a、b、c,∠A=120°,试用这样的三角形拼成一个正三角形(设面积为S3),先画出这个正三角形,再推出S3的计算公式;
推广:
(3)对于三角形的三边长分别为a、b、c,当∠A取什么值时,能拼成一个任意正n边形吗?如果能,试写出∠A和三角形的面积Sn的表达式;如果不能,请简要说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

课题:探究能拼成正多边形的三角形的面积计算公式.

1.如图1,三角形的三边长分别为a、b、c,∠A=60°,现将六个这样的三角形(设面积为)拼成一个六边形,由于大六边形三个角都是∠B+∠C=120°,所以由a边围成了一个大的正六边形,其面积可计算出为          ;由于所围成的小六边形的边长都是        ,其面积为            ,由此可得                   .

2.如图2, 三角形的三边长分别为a、b、c,∠A=120°,试用这样的三角形拼成一个正三角形(设面积为),先画出这个正三角形,再推出的计算公式;

3.推广:

对于三角形的三边长分别为a、b、c,当∠A取什么值时,能拼成一个任意正边形吗?如果能,试写出∠A和三角形的面积的表达式;如果不能,请简要说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江西省中等学校招生统一考试数学卷(二) 题型:解答题

课题:探究能拼成正多边形的三角形的面积计算公式.
【小题1】如图1,三角形的三边长分别为a、b、c,∠A=60°,现将六个这样的三角形(设面积为)拼成一个六边形,由于大六边形三个角都是∠B+∠C=120°,所以由a边围成了一个大的正六边形,其面积可计算出为         ;由于所围成的小六边形的边长都是       ,其面积为           ,由此可得                   .
【小题2】如图2, 三角形的三边长分别为a、b、c,∠A=120°,试用这样的三角形拼成一个正三角形(设面积为),先画出这个正三角形,再推出的计算公式;
【小题3】推广:
对于三角形的三边长分别为a、b、c,当∠A取什么值时,能拼成一个任意正边形吗?如果能,试写出∠A和三角形的面积的表达式;如果不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年江西省等学校招生统一考试数学卷(二) 题型:解答题

课题:探究能拼成正多边形的三角形的面积计算公式.

1.如图1,三角形的三边长分别为a、b、c,∠A=60°,现将六个这样的三角形(设面积为)拼成一个六边形,由于大六边形三个角都是∠B+∠C=120°,所以由a边围成了一个大的正六边形,其面积可计算出为          ;由于所围成的小六边形的边长都是        ,其面积为            ,由此可得                    .

2.如图2, 三角形的三边长分别为a、b、c,∠A=120°,试用这样的三角形拼成一个正三角形(设面积为),先画出这个正三角形,再推出的计算公式;

3.推广:

对于三角形的三边长分别为a、b、c,当∠A取什么值时,能拼成一个任意正边形吗?如果能,试写出∠A和三角形的面积的表达式;如果不能,请简要说明理由.

 

查看答案和解析>>

同步练习册答案