精英家教网 > 初中数学 > 题目详情
13.小明和小红、小兵玩捉迷藏游戏,小红、小兵可以在A、B、C三个地点中任意一处藏身,小明去寻找他们.
(1)求小明在B处找到小红的概率;
(2)求小明在同一地点找到小红和小兵的概率.

分析 (1)由题意可知有三处可以藏身,所以小明在B处找到小红的概率为其中的三分之一;
(2)根据题意画树状图,然后根据树状图求得所有等可能的结果与小明在同一地点找到小红和小兵的情况,然后根据概率公式求解即可.

解答 解:
(1)∵小红、小兵可以在A、B、C三个地点中任意一处藏身,
∴小明在B处找到小红的概率=$\frac{1}{3}$;
(2)画树形图得:

由树形图可知小明在同一地点找到小红和小兵的概率=$\frac{3}{9}$=$\frac{1}{3}$.

点评 此题考查了树状图法与列表法求概率.树状图法与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象与y轴交于点C(0,8),与x轴交于A,B两点,其中A(-2,0),B(6,0).
(1)求二次函数的表达式;
(2)若E是线段BC上一点,P是抛物线(在第一象限内的)上一点,EC=EP,且点E关于直线PC的对称点F在y轴上,求证:PE平行于y轴,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)计算:(-1)2010+$\sqrt{9}×(\sqrt{5}-π)^{0}+(\frac{1}{5})^{-1}$;
(2)化简:$\frac{4}{{a}^{2}-4}+\frac{2}{a+2}-\frac{1}{a-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若关于x的方程x2+2x+m-5=0有两个相等的实数根,则m=6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:|-$\sqrt{2}$|-2cos45°+(2016-π)0-$\sqrt{18}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.某人要购买一件28元的商品,他的钱包内有5元、10元和20元的纸币各一张,从中随机取出2张纸币,则取出纸币的总额可以购买这件商品的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:
(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.规定:sin(x+y)=sinx•cosy+cosx•siny.根据初中学过的特殊角的三角函数值,求得sin75°的值为$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在矩形ABCD中,AB=2,BC=4,M是AD的中点,动点E在线段AB上,连结EM并延长交射线CD于点F,过点M作EF的垂线交BC于点G,连结EG、FG.
(1)求证:△AME≌△DMF;
(2)在点E的运动过程中,探究:
①△EGF的形状是否发生变化,若不变,请判断△EGF的形状,并说明理由;
②线段MG的中点H运动的路程最长为多少?(直接写出结果)
(3)设AE=x,△EGF的面积为S,求当S=6时,求x的值.

查看答案和解析>>

同步练习册答案