精英家教网 > 初中数学 > 题目详情

如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD。

求证:BE⊥AC

1)证法一

∵AD为△ABC的高

∴∠BDF=∠ADC=90°

∴在Rt△BDF和Rt△ADC中,  ;

∴Rt△BDF≌Rt△ADC(HL).

∴∠FBD=∠CAD即∠EBD=∠CAD

∵在Rt△ADC中,∠CAD+∠C=90°

∴在△BCE中,∠EBC+∠C=90°

∴∠BEC=90°

∴BE⊥AC

(证法二,由∠CAD+∠AFE=∠FBD+∠BFD=90°,得∠AEF=90°∴BE⊥AC)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在点C′的位置,BC=4,求BC′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,BE为△ABD的中线.
(1)在△BED中作BD边上的高,垂足为F;
(2)若△ABC的面积为20,BD=5.
①△ABD的面积为
 

②求△BDE中BD边上的高EF的长;
(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度数;
(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作图:在△BED中作BD边上的高,垂足为F;
(3)若△ABC的面积为60,BD=6,则△BDE中BD边上的高为多少?(请写出解题的必要过程)
(4)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代数式表示)

查看答案和解析>>

同步练习册答案