精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y= (k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.
(1)求函数y= 的表达式,并直接写出E、F两点的坐标;
(2)求△AEF的面积.

【答案】
(1)解:∵正方形OABC的边长为2,

∴点D的纵坐标为2,即y=2,

将y=2代入y=2x,得x=1,

∴点D的坐标为(1,2),

∵函数y= 的图象经过点D,

∴2=

解得k=2,

∴函数y= 的表达式为y=

∴E(2,1),F(﹣1,﹣2);


(2)解:过点F作FG⊥AB,与AB的延长线交于点G,

∵E(2,1),F(﹣1,﹣2),

∴AE=1,

FG=2﹣(﹣1)=3,

∴△AEF的面积为: AEFG= ×1×3=


【解析】(1)根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标;(2)过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.
【考点精析】本题主要考查了正方形的性质的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.

(1)填空:A点坐标为(),D点坐标为();
(2)若抛物线y= x2+bx+c经过C,D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣ ,顶点坐标是(﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,,依此类推.这样第_____次移动到的点到原点的距离为2018.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.

(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?

(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.

例如:方程 的解为 ,不等式组 的解集为 ,因为 ,所以,称方程为不等式组的关联方程.

(1)在方程①中,不等式组 的关联方程是 ;(填序号)

(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)

(3)若方程都是关于的不等式组的关联方程,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(
A.8的立方根是±2
B. 是一个最简二次根式
C.函数y= 的自变量x的取值范围是x>1
D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)计算:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)2x

2)先化简,再求值:2b2+a+b)(abab2,其中a=3b=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知线段AB.

(1)用没有刻度的直尺和圆规按所给的要求作图:点C在线段BA的延长线上CAAB;

(2)(1)如果AB=28 cm,线段BC上有一点M且线段AMBM=13,求线段CM的长.

查看答案和解析>>

同步练习册答案