精英家教网 > 初中数学 > 题目详情
1.解方程组:
(1)$\left\{{\begin{array}{l}{x-3y=-20}\\{3x+7y=100}\end{array}}\right.$
(2)$\left\{\begin{array}{l}2009x+y=1\\ x+2009y=1\end{array}\right.$
(3)$\left\{\begin{array}{l}\frac{x-1}{3}=\frac{2y+3}{4}\\ 4x-3y=7\end{array}\right.$
(4)$\left\{\begin{array}{l}x+y=1\\ y+z=6\\ z+x=5\end{array}\right.$.

分析 (1)先①×3-②求出y的值,再把y的值代入①求出x的值,即可求出方程组的解;
(2)先用①+②求出x+y的值,再与①进行相减,求出x的值,再把x的值代入③,求出y的值,从而得出答案;
(3)先把①进行变形,再用②-③求出y的值,再把y的值代入②求出x的值,从而得出答案;
(4)根据解三元一次方程组的步骤先消去一个未知数,得到一个二元一次方程组,再根据二元一次方程组的解法进行求解,从而得出答案.

解答 解:(1)$\left\{\begin{array}{l}{x-3y=-20①}\\{3x+7y=100②}\end{array}\right.$,
①×3-②得:-16y=-160,
解得:y=10,
把y=10代入①得:x=10,
则原方程组的解是:$\left\{\begin{array}{l}{x=10}\\{y=10}\end{array}\right.$;

(2)$\left\{\begin{array}{l}{2009x+y=1①}\\{x+2009y=1②}\end{array}\right.$,
①+②得;x+y=$\frac{1}{1005}$③,
①-③得:2008x=$\frac{1004}{1005}$,
解得:x=$\frac{1}{2010}$,
把x=$\frac{1}{2010}$代入③得:y=$\frac{1}{2010}$,
则原方程组的解是:$\left\{\begin{array}{l}{x=\frac{1}{2010}}\\{y=\frac{1}{2010}}\end{array}\right.$;

(3)$\left\{\begin{array}{l}{\frac{x-1}{3}=\frac{2y+3}{4}①}\\{4x-3y=7②}\end{array}\right.$
①4x-6y=13③,
②-③得:3y=-6,
解得:y=-2,
把y=-2代入②得:x=$\frac{1}{4}$,
则原方程组的解为:$\left\{\begin{array}{l}{x=\frac{1}{4}}\\{y=-2}\end{array}\right.$;

(4)$\left\{\begin{array}{l}{x+y=1①}\\{y+z=6②}\\{z+x=5③}\end{array}\right.$
由①得,y=1-x
把y=1-x代入②得,1-x+z=6④
④+③得2z=10,
解得z=5,
把z=5代入②得,y=1,
把y=1代入②得,x=0,
则原方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=1}\\{z=5}\end{array}\right.$.

点评 本题考查了二元一次方程组和三元一次方程组的解法,掌握二元一次方程组和三元一次方程组的解法是本题的关键;三元一次方程组的解法是把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.已知x2-6x=1,求代数式(x+2)2-2x(x-1)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图所示,已知△ABC≌△EDC,∠E=∠A=30°,∠D=50°,则∠BCE=20°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.二元一次方程2x+3y=6,和3x+2y=-1的公共解是(  )
A.$\left\{\begin{array}{l}x=3\\ y=-2\end{array}\right.$B.$\left\{\begin{array}{l}x=-3\\ y=2\end{array}\right.$C.$\left\{\begin{array}{l}x=3\\ y=2\end{array}\right.$D.$\left\{\begin{array}{l}x=-3\\ y=4\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程组或不等式组,并把不等式组的解集在数轴上表示出来:
(1)$\left\{\begin{array}{l}{3x+2y=16}\\{x-3y=-2}\end{array}\right.$
(2)$\left\{\begin{array}{l}{5x-1>2x-4}\\{\frac{1}{2}x≤\frac{x+2}{4}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程组或不等式组,并把它的解集在数轴上表示.
(1)$\left\{\begin{array}{l}\frac{x+1}{5}=\frac{y-3}{2}\\ 3x+4y=32\end{array}\right.$
(2)$\left\{\begin{array}{l}{5x-1>2x-4}\\{\frac{1}{2}x≤\frac{x+2}{4}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形沿EF折叠,使点D与点B重合,折痕为EF,则BE为(  )cm.
A.3.5B.3.25C.5D.3.725

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某校组织了一批学生随机对部分市民就是否吸烟以及吸烟和非吸烟人群对于在公共场所吸烟的态度(分三类:A表示主动制止;B表示反感但不制止;C表示无所谓)进行了问卷调查,根据调查结果分别绘制了如下两个统计图,请根据图中提供的信息解答下列问题
(1)图1中:“吸烟”类人数所占扇形的圆心角的度数是多少?
(2)这次被调查的市民有多少人?
(3)补全条形统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图是某个几何体的三视图,则该几何体的名称是三棱柱.

查看答案和解析>>

同步练习册答案