精英家教网 > 初中数学 > 题目详情
12.求方程2x2-2xy+2y2-4x-4y+6=0的整数解.

分析 将方程变形为(x-y)2+(x-2)2+(y-2)2=2,根据整数解的定义分三个代数式x-y,x-2,y-2中两个绝对值为1,一个为0,可得方程组$\left\{\begin{array}{l}{x-y=-1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=1}\end{array}\right.$,解方程组求得x,y的值.

解答 解:2x2-2xy+2y2-4x-4y+6=0,
(x-y)2+(x-2)2+(y-2)2=2,
∵求方程的整数解,
∴$\left\{\begin{array}{l}{x-y=-1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=-1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$.
故方程2x2-2xy+2y2-4x-4y+6=0的整数解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$.

点评 本题考查了非一次不定方程(组)中方程整数解的求法:把方程进行变形,使方程左边分解为含未知数的3个式子,右边为常数,然后利用整数的整除性求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.已知:如图,直角三角形BCA中,∠BCA=90°,BC=a,CA=b,AB=c,请你用两种方法证明:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若关于x的方程x2-$\sqrt{2}$x+sina=0有两个相等的实数根,则锐角a为(  )
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,直线y=$\frac{\sqrt{3}}{3}x$+1和x轴、y轴分别交于点A、B.若以线段AB为边作等边三角形ABC,则点C的坐标是($\sqrt{3}$,2)或(0,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.⊙O是△ABG的外接圆,M是BC中点,PB,PC是⊙O切线,DM⊥ME.
求证:∠BPC=2∠DPE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,△ABC中,∠BAC=45°,过A、B两点的⊙O交AC于点D,且OD∥BC,OD交AB于点E.
(1)求证:BC是⊙O的切线;
(2)若∠OEB=60°,求AD:CD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在平面直角坐标系中,点A在抛物线y=x2-2x+3上运动,过点A作AB⊥x轴于点B,以AB为斜边作Rt△ABC,则AB边上的中线CD的最小值为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:(2x+1)2-x(5+2x)+(2+x)(2-x),其中x2-x=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.
(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;
(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.

查看答案和解析>>

同步练习册答案