分析 将方程变形为(x-y)2+(x-2)2+(y-2)2=2,根据整数解的定义分三个代数式x-y,x-2,y-2中两个绝对值为1,一个为0,可得方程组$\left\{\begin{array}{l}{x-y=-1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=1}\end{array}\right.$,解方程组求得x,y的值.
解答 解:2x2-2xy+2y2-4x-4y+6=0,
(x-y)2+(x-2)2+(y-2)2=2,
∵求方程的整数解,
∴$\left\{\begin{array}{l}{x-y=-1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=-1}\end{array}\right.$,无解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$.
故方程2x2-2xy+2y2-4x-4y+6=0的整数解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$.
点评 本题考查了非一次不定方程(组)中方程整数解的求法:把方程进行变形,使方程左边分解为含未知数的3个式子,右边为常数,然后利用整数的整除性求解.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com