精英家教网 > 初中数学 > 题目详情
10.如图1,已知正方形ABCD边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连结PQ、DQ、CQ、BQ.设AP=x.

(1)BQ+DQ的最小值是$\sqrt{2}$,此时x的值是$\sqrt{2}$-1;
(2)如图2,若PQ的延长线交CD边于E,并且∠CQD=90°.
①求证:QE﹦EC;    
②求x的值.
(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.

分析 (1)BQ+DQ为点B到D两段折线的和.由两点间线段最短可知,连接DB,若Q点落在BD上,此时和最短,且为$\sqrt{2}$.考虑动点运动,这种情形是存在的,由AP=x,则PD=1-x,PQ=x.又∠PDQ=45°,所以PD=$\sqrt{2}$PQ,即1-x=$\sqrt{2}$x.求解可得x=$\sqrt{2}$-1.
(2)①由已知条件对称分析,AB=BQ=BC,则∠BCQ=∠BQC,由∠BQE=∠BCE=90°,可得∠EQC=∠ECQ即可.
②通常都是考虑勾股定理,选择直角三角形PDE,发现PE,DE,PD都可用x来表示,进而易得方程,求解即可.
(3)若△CDQ为等腰三角形,则边CD比为改等腰三角形的一腰或者底边.又Q点为A点关于PB的对称点,则AB=QB,以点B为圆心,以AB的长为半径画弧,则Q点只能在弧AB上.若CD为腰,以点C为圆心,以CD的长为半径画弧,两弧交点即为使得△CDQ为等腰三角形(CD为腰)的Q点.若CD为底边,则作CD的垂直平分线,其与弧AC的交点即为使得△CDQ为等腰三角形(CD为底)的Q点.则如图所示共有三个Q点,那么也共有3个P点.作辅助线,利用直角三角形性质求之即可

解答 解:(1)连接DB,若Q点落在BD上,此时和最短,且为$\sqrt{2}$,
由AP=x,则PD=1-x,PQ=x.
∵∠PDQ=45°,
∴PD=$\sqrt{2}$PQ,即1-x=$\sqrt{2}$x.
∴x=$\sqrt{2}$-1,
故答案为:$\sqrt{2}$,$\sqrt{2}$-1
(2)①证明:在正方形ABCD中,
AB=BC,∠A=∠BCD=90°.
∵Q点为A点关于BP的对称点,
∴AB=QB,∠A=∠PQB=90°,
∴QB=BC,∠BQE=∠BCE,
∴∠BQC=∠BCQ,
∴∠EQC=∠EQB-∠CQB=∠ECB-∠QCB=∠ECQ,
∴EQ=EC.
②解:∵AP=x,AD=1,
∴PD=1-x,PQ=x,CD=1.
在Rt△DQC中,
∵E为CD的中点,
∴DE=QE=CE=$\frac{1}{2}$,
∴PE=PQ+QE=x+$\frac{1}{2}$,
∴$(x+\frac{1}{2})^{2}=(1-x)^{2}+\frac{1}{4}$,
解得 x=$\frac{1}{3}$.

(3)答:△CDQ为等腰三角形时x的值为2-$\sqrt{3}$,$\frac{\sqrt{3}}{3}$,2+$\sqrt{3}$.
如图1,

以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于Q1,Q3
此时△CDQ1,△CDQ3都为以CD为腰的等腰三角形.
作CD的垂直平分线交弧AC于点Q2,此时△CDQ2以CD为底的等腰三角形.

①如图2,连接BQ1、CQ1,作PQ1⊥BQ1交AD于P,过点Q1,作EF⊥AD于E,交BC于F.
∵△BCQ1为等边三角形,正方形ABCD边长为1,
∴Q1F=$\frac{\sqrt{3}}{2}$Q1E=$\frac{2-\sqrt{3}}{2}$.
在四边形ABPQ1中,
∵∠ABQ1=30°,
∴∠APQ1=150°,
∴△PEQ1为含30°的直角三角形,
∴PE=$\sqrt{3}$Q1E=$\frac{2\sqrt{3}-3}{2}$.
∵AE=$\frac{1}{2}$,
∴x=AP=AE-PE=2-$\sqrt{3}$.

②如图3,连接BQ2,AQ2,过点Q2作PG⊥BQ2,交AD于P,连接BP,过点Q2作EF⊥CD于E,交AB于F.
∵EF垂直平分CD,
∴EF垂直平分AB,
∴AQ2=BQ2
∵AB=BQ2
∴△ABQ2为等边三角形.
在四边形ABQP中,
∵∠BAD=∠BQP=90°,∠ABQ2=60°,
∴∠APE=120°
∴∠EQ2G=∠DPG=180°-120°=60°,
∴Q2E=$\frac{2-\sqrt{3}}{2}$,
∴EG=$\frac{2\sqrt{3}-3}{2}$,
∴DG=DE+GE=$\sqrt{3}$-1,
∴PD=1-$\frac{\sqrt{3}}{3}$,
∴x=AP=1-PD=$\frac{\sqrt{3}}{3}$.

③如图4,连接BQ1,CQ1,BQ3,CQ3,过点Q3作BQ3⊥PQ3,交AD的延长线于P,连接BP,过点Q1,作EF⊥AD于E,此时Q3在EF上,不妨记Q3与F重合.
∵△BCQ1为等边三角形,△BCQ3为等边三角形,BC=1,
∴Q1Q2=$\sqrt{3}$,Q1E=$\frac{2-\sqrt{3}}{2}$,
∴EF=$\frac{2+\sqrt{3}}{2}$.
在四边形ABQ3P中
∵∠ABF=∠ABC+∠CBQ3=150°,
∴∠EPF=30°,
∴EP=$\sqrt{3}$EF=$\frac{2\sqrt{3}+3}{2}$.
∵AE=$\frac{1}{2}$,
∴x=AP=AE+PE=$\sqrt{3}$+2.
综上所述,△CDQ为等腰三角形时x的值为2-$\sqrt{3}$,$\frac{\sqrt{3}}{3}$,2+$\sqrt{3}$.

点评 此题是四边形的综合题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,直角三角形的性质,对称性,画出图形是解本题的关键,也是难点,是一道比较难点压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,∠ACB为锐角,点D为BC边上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.

(1)如图1,若AB=AC,∠BAC=90°,当点D在线段BC上时(不与点B重合),证明:△ACF≌△ABD
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,猜想CF与BD的数量关系和位置关系是什么,并说明理由;
(3)如图3,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动(不与点B重合),试探究CF与BD位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知抛物线y=-x2+bx+3交x轴负、正半轴于A、B两点,交y轴与点C,且tan∠ACO=$\frac{1}{3}$,△ABC的外接圆的圆心为M.
(1)求该二次函数的解析式;
(2)在x轴上方的抛物线上是否存在一点P,使S△BCP=3,若存在请求出点P坐标,若不存在,说明理由;
(3)圆上是否存在Q点,使△AOC与△BQC相似?若存在,直接写出点Q坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,四边形ABCD中,AD=CD,AB=CB.我们把这种两组邻边分别相等的凸四边形叫做筝形.AC,BD叫作筝形的对角线.请你通过观察、测量、折纸等方法进行探究,并回答以下问题:
(1)判断下列结论是否正确;
a.∠DAB=∠DCB;√
b.∠ABC=∠ADC;× 
c.BD分别平分∠ABC和∠ADC√
d.筝形是轴对称图形,它有两条对称轴.×
(2)请你选择下列问题中的一个进行证明:
a.从(1)中选择一个正确的结论进行证明;
b.通过探究,再找到一条筝形的性质,并进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直角坐标系中,O为原点,A(6,0),在等腰三角形ABO中,OB=BA=5,点B在第一象限,C(0,k)为y轴正半轴上一动点,作以∠CBD为顶角的等腰三角形CBD,且∠CBD=∠OBA,连结AD.
(1)①求点B的坐标;②若BD∥OC,求k的值.
(2)求证:OC=AD;
(3)设直线AD与y轴交于点M(0,m),当点C在y轴上运动时,点M的位置是否改变?若改变,求m与k的函数关系式,若不变,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在Rt△ABC中,∠ACB=90°,AC=BC,CD为AB边上的中线.在Rt△AEF中,∠AEF=90°,AE=EF,AF<AC.连接BF,M,N分别为线段AF,BF的中点,连接MN.
(1)如图1,点F在△ABC内,求证:CD=MN;
(2)如图2,点F在△ABC外,依题意补全图2,连接CN,EN,判断CN与EN的数量关系与位置关系,并加以证明;
(3)将图1中的△AEF绕点A旋转,若AC=a,AF=b(b<a),直接写出EN的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA-PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.
(1)当⊙O的半径为2时,
①在点M($\frac{3}{2}$,0),N(0,1),T(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)中,⊙O的“完美点”是N,T;
②若⊙O的“完美点”P在直线y=$\sqrt{3}$x上,求PO的长及点P的坐标;
(2)⊙C的圆心在直线y=$\sqrt{3}$x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.把多项式9-2x2+x按字母x降幂排列是-2x2+x+9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.34.37°=34°22′12″.

查看答案和解析>>

同步练习册答案