精英家教网 > 初中数学 > 题目详情
(本题满分12分)
如图,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,点P为射线CA上的一个动点,以为圆心,1为半径作
(1)连结,若,试判断与直线AB的位置关系,并说明理由;
(2)当PC为              时,与直线AB相切?当与直线AB相交时,写出PC的取值范围为                  
(3)当与直线AB相交于点M、N时,是否存在△PMN为正三角形?若存在,求出PC的值;若不存在,说明理由.
解:(1)过点P作PD⊥AB于点D,………………………1分
∵PA = PB,∴AD = BD,……………………………………2分
在Rt△ACB中,AC = 4,BC = 2,
∴AB = ,∴AD =,……………3分
∵tan∠CAB= ,∴AD =>1,……………4分
与直线AB相离;……………………………………5分
(2)4±<PC<;……………………9分
(3)当和线段AB相交时,过点P作PH⊥AB于点H,
∵△PMN为正三角形,即△PMN是边长为1的三角形;
,∵tan∠CAB= 
∴PA=,∴PC=4-
同理,当交在BA的延长线部分时,PC=4+.………………12分
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:计算题

已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线交AB所在直线于点E,交⊙O于点F。
(1)判定图中的数量关系,并写出结论;
(2)将直线绕C点旋转(与CD不重合),在旋转过程中,E点、F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明。
         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是(  )
A.DE="DO"B.AB=AC
C.CD="DB"D.AC∥OD

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•广元)若用圆心角为120°,半径为9的扇形围成一个圆锥侧面(接缝忽略不计),则这个圆锥的底面直径是(  )
A.3B.6
C.9D.12

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)如图直角坐标系中,已知A(-4,0),B(0,3),点M在线段A
上.
(1)如图1,如果点M是线段AB的中点,且⊙M的半径为2,试判断直线OB与⊙M的位置关系,并说明理由;
(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)如图,△ABC中,AB=4,AC=2,BC=2,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.

(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;
(2)求图中阴影部分的面积(结果可保留根号和).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·贵港)(本题满分11分)
如图所示,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于点B,大圆的弦BC⊥AB于点B,过点C作大圆的切线CD交AB的延长线于点D,连接OC交小圆于点E,连接BE、BO.

(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长为y:
①求y与x之间的函数关系式;
②当BE与小圆相切时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若一直角三角形的斜边长为,内切圆半径是,则内切圆的面积与三角形面积之比是(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(11·永州)如图,在⊙O中,直径CD垂直弦AB于点E,连接OB,CB,已知⊙O的半径为2,AB=,则∠BCD=________度.

查看答案和解析>>

同步练习册答案