【题目】阅读下列文字与例题,并解答:
将一个多项式分组进行因式分解后,可用提公因式法或公式法继续分解的方法称作分组分解法.
例如:以下式子的分解因式的方法就称为分组分解法.
A2+2ab+b2+ac+bc
原式=(a2+2ab+b2)+ac+bc
=(a+b)2+c(a+b)
=(a+b)(a+b+c)
(1)试用“分组分解法”因式分解:
(2)已知四个实数a,b,c,d,满足a≠b,c≠d,并且aa+ac=12k,b2+bc=12k,c2+ac=24k,d2+ad=24k
,同时成立.
①当k=1时,求a+c的值;
②当k≠0时,用含a的代数式分别表示、、 (直接写出答案即可).
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=10,AD=6,点M为AB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点P、Q
(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)
(2)如果PQ与AB、CD都相交,试判断△MPQ的形状并证明你的结论;
(3)设AM=x,d为点M到直线PQ的距离,y=d2 ,
①求y关于x的函数解析式,并指出x的取值范围;
②当直线PQ恰好通过点D时,求点M到直线PQ的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校学生的课外阅读情况,随机抽查了10学生周阅读用时数,结果如下表:
周阅读用时数(小时) | 4 | 5 | 8 | 12 |
学生人数(人) | 3 | 4 | 2 | 1 |
则关于这10名学生周阅读所用时间,下列说法正确的是( )
A.中位数是6.5
B.众数是12
C.平均数是3.9
D.方差是6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.
(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由
(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ (x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是 ,矩形的周长是2(x+ );当矩形成为正方形时,就有x= (x>0),解得x=1,这时矩形的周长2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿张华的推导,你求得式子 (x>0)的最小值是( )
A.2
B.1
C.6
D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,AB=AC,∠BAC=90,直角∠EPF的顶点是BC的中点,两边PE,PF分别交AB,AC于点E,F.给出以下五个结论:(1)AE=CF;(2)∠APE =∠CPF;(3)△EPF是等腰直角三角形;(4)= (5)EF=AP其中一定成立的有________个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,连接EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则S△ABE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,E,F分别在边AC、BC上,满足AE=CF,连接BE,AF交于点P.
(1)求证:△ABE≌△CAF;
(2)求∠APB的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com