精英家教网 > 初中数学 > 题目详情

问题“如图,已知点O在直线上,以线段OD为一边画等腰三角形,且使另一顶点A在直线上,则满足条件的A点有几个?”我们可以用圆规探究,按如图的方式,画图找到4个点:A1、A2、A3、A4,这种找点的过程中体现了( ▲ )的数学思想方法.

A.归纳与演绎B.分类讨论C.函数与方程D.转化与化归

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、实践与操作:在课堂上,李老师和同学们探究了与三角形面积相关的问题.如图,已知点A、B同在直线a上,点C1、C2在直线a的同一侧.
(1)过C1画C1M⊥AB,垂足为M,过C2画C2N⊥AB,垂足为N;
(2)用圆规比较C1M、C2N的大小;
(3)试问三角形C1AB面积和三角形C2AB面积是否相等?问什么?
(4)连接C1C2,问AB与C1C2是否互相平行?(用直尺和三角板画平行线的方法加以校验)
(5)在与点C1、C2的同一侧,画三角形C3AB,三角形C4AB,并使三角形C3AB、三角形C4AB面积都与三角形C1AB面积相等;通过以上画图,问点C3、C4同在直线C1C2上吗?
(6)当三角形有一个顶点在直线C1C2上运动时,它和点A、B一起构成的三角形面积是否有变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

6、问题:“如图,已知点O在直线l上,以线段OD为一边画等腰三角形,且使另一顶点A在直线l上,则满足条件的A点有几个?”.我们可以用圆规探究,按如图的方式,画图找到4个点:A1、A2、A3、A4.这种问题说明的方式体现了(  )的数学思想方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):
(1)请就图①证明上述“模块”的合理性.已知:∠A=∠D=∠BCE=90°,求证:△ABC∽△DCE;
(2)请直接利用上述“模块”的结论解决下面两个问题:
①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;
②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A关于直线CD的对称点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

实践与操作:在课堂上,李老师和同学们探究了与三角形面积相关的问题.如图,已知点A、B同在直线a上,点C1、C2在直线a的同一侧.
(1)过C1画C1M⊥AB,垂足为M,过C2画C2N⊥AB,垂足为N;
(2)用圆规比较C1M、C2N的大小;
(3)试问三角形C1AB面积和三角形C2AB面积是否相等?问什么?
(4)连接C1C2,问AB与C1C2是否互相平行?(用直尺和三角板画平行线的方法加以校验)
(5)在与点C1、C2的同一侧,画三角形C3AB,三角形C4AB,并使三角形C3AB、三角形C4AB面积都与三角形C1AB面积相等;通过以上画图,问点C3、C4同在直线C1C2上吗?
(6)当三角形有一个顶点在直线C1C2上运动时,它和点A、B一起构成的三角形面积是否有变化?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

问题:“如图,已知点O在直线l上,以线段OD为一边画等腰三角形,且使另一顶点A在直线l上,则满足条件的A点有几个?”.我们可以用圆规探究,按如图的方式,画图找到4个点:A1、A2、A3、A4.这种问题说明的方式体现了(  )的数学思想方法.
A.归纳与演绎B.分类讨论C.数形结合D.转化与化归
精英家教网

查看答案和解析>>

同步练习册答案