精英家教网 > 初中数学 > 题目详情
精英家教网如图,二次函数y=a x2+bx+c(a≠0)的图象与x轴交于A,B,与y轴交于点C,A、C的坐标分别是(1,0)和(0,2),B在A的右侧,且∠OCA=∠OBC.
(1)求证:△AOC∽△COB;
(2)求这个二次函数的解析式及顶点坐标.
分析:(1)利用两个角相等的三角形相似,直接进行判定即可;
(2)利用(1)的结论求得点B坐标,代入三点坐标即可求出函数解析式,再据函数解析式求得顶点坐标.
解答:精英家教网(1)证明:∵∠OCA=∠OBC,
∠COA=∠BOC=90°,
∴△AOC∽△COB;

(2)解:∵△AOC∽△COB,
OA
OC
=
OC
OB

1
2
=
2
OB

解得OB=4,
即点B的坐标为(4,0),
把点A、B、C三点代入函数解析式得,
c=2
4a+2b+c=0
16a+4b+c=0

解得
a=
1
2
b=-
5
2
c=2

所以函数解析式为:y=
1
2
x2-
5
2
x+2

因此顶点坐标为:(
5
2
-
9
8
).
点评:此题考查相似三角形的判定与性质,待定系数法求函数解析式以及求顶点坐标的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案