精英家教网 > 初中数学 > 题目详情
21、已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.
(1)观察图形并找出一对全等三角形:△
≌△
,请加以证明;
(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?
分析:(1)本题要证明如△ODE≌△BOF,已知四边形ABCD是平行四边形,具备了同位角、内错角相等,又因为OD=OB,可根据AAS能判定△DOE≌△BOF;本题还可证明①△BOM≌△DON;②△ABD≌△CDB;
(2)平行四边形是中心对称图形,这三对全等三角形中的一个都是以其中另一个三角形绕点O旋转180°后得到或以点O为中心作对称变换得到.
解答:解:(1)△DOE≌△BOF;
证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠EDO=∠FBO,∠E=∠F.
又∵OD=OB,
∴△DOE≌△BOF(AAS).
①△BOM≌△DON.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠MBO=∠NDO,∠BMO=∠DNO.
又∵BO=DO,
∴△BOM≌△DON(AAS).
②△ABD≌△CDB.
证明:∵四边形ABCD是平行四边形,
∴AD=CB,AB=CD.
又∵BD=DB,
∴△ABD≌△CDB(SSS).

(2)绕点O旋转180°后得到或以点O为中心作对称变换得到.
点评:本题考了全等三角形和平行四边形的性质和中心对称图形,比较容易.(1)可以不限制△ODE≌△BOF,增加题目的“含金量”.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、如图,在平行四边行ABCD中,DE平分∠ADC交BC边于点E,已知BE=4cm,AB=6cm,则AD的长度是(  )

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

已知如图所示,在平行四边ABCD中,对角线相交于点O,已知AB=24cm,BC=18cm,△AOB的周长是54cm那么△AOD的周长是________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:022

已知如图所示,在平行四边ABCD中,对角线相交于点O,已知AB=24cm,BC=18cm,△AOB的周长是54cm那么△AOD的周长是________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,矩形ABCD中,AB=6,BC=8,EFGH分别是ABBCCDDA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.

(1)如图2,当EFGH分别是ABBCCDDA四边中点时,m________

(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.

①请在图1中补全小贝同学翻折后的图形;

m的取值范围是____________

【解析】本题主要考查对平行四边形的性质和判定,全等三角形的性质和判定等知识点的理解和掌握

 

查看答案和解析>>

科目:初中数学 来源:2012届北京市西城区九年级一模数学卷(解析版) 题型:解答题

已知:如图1,矩形ABCD中,AB=6,BC=8,EFGH分别是ABBCCDDA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.

(1)如图2,当EFGH分别是ABBCCDDA四边中点时,m________

(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.

①请在图1中补全小贝同学翻折后的图形;

m的取值范围是____________

【解析】本题主要考查对平行四边形的性质和判定,全等三角形的性质和判定等知识点的理解和掌握

 

查看答案和解析>>

同步练习册答案