精英家教网 > 初中数学 > 题目详情
(2013•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为
6
5
6
5
分析:根据已知中的点E,F的位置,可知入射角的正切值为
1
2
,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.
解答:解:根据已知中的点E,F的位置,可知入射角的正切值为
1
2
,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为G,在DA上,且DG=
1
6
DA,第三次碰撞点为H,在DC上,且DH=
1
3
DC,第四次碰撞点为M,在CB上,且CM=
1
3
BC,第五次碰撞点为N,在DA上,且AN=
1
6
AD,第六次回到E点,AE=
1
3
AB.
由勾股定理可以得出EF=
5
,FG=
3
2
5
,GH=
1
2
5
,HM=
5
,MN=
3
2
5
,NE=
1
2
5

故小球经过的路程为:
5
+
3
2
5
+
1
2
5
+
5
+
3
2
5
+
1
2
5
=6
5

故答案为:6
5
点评:本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形的性质来确定反射后的点的位置,从而可得反射的次数,由勾股定理来确定小球经过的路程,是一道数学物理学科综合试题,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•舟山)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•舟山)如图,在平面直角坐标系xOy中,抛物线y=
1
4
(x-m)2-
1
4
m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•舟山)如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.
(1)求证:△ABE≌DCE;
(2)当∠AEB=50°,求∠EBC的度数?

查看答案和解析>>

同步练习册答案