已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.
(1)求此抛物线的解析式和直线的解析式;
(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,以A、P、Q为顶点的三角形与△AOC相似;
(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大.若存在,求出点D的坐标;若不存在,请说明理由.
(1)直线的解析式为y=x-3,抛物线解析式为;
(2)①t=,②t=;(3)存在,理由见解析.
解析试题分析:(1)将A点坐标代入直线的解析式中,即可求得k的值,从而确定该直线的解析式;将A、C的坐标代入抛物线的解析式中,可求得m、n的值,从而确定抛物线的解析式.
(2)根据(1)得到的抛物线解析式,可求得点B的坐标,根据P、Q的运动速度,可用t表示出BP、CQ的长,进而可得到AQ、AP的长,然后分三种情况讨论:
①∠APQ=90°,此时PQ∥OC,可得到△APQ∽△AOC,根据相似三角形所得比例线段即可求得t的值;
②∠AQP=90°,亦可证得△APQ∽△ACO,同①的方法可求得此时t的值;
③∠PAQ=90°,显然这种情况是不成立的.
(3)过D作y轴的平行线,交直线AC于F,设出点D的横坐标,根据抛物线和直线AC的解析式可表示出D、F的纵坐标,进而可求得DF的长,以DF为底,A点横坐标的绝对值为高即可得到△ADC的面积表达式(或由△ADF、△CDF的面积和求得),由此可求出关于△ADC的面积和D点横坐标的函数关系,根据函数的性质即可求得△ADC的面积最大值及对应的D点坐标.
试题解析:
∵直线y=kx-3过点A(4,0),∴0=4k-3,解得k=.
∴直线的解析式为y=x-3.
由直线y=x-3与y轴交于点C,可知C(0,-3).
∴,解得m=.
∴抛物线解析式为
(2)对于抛物线,
令y=0,则,解得x1=1,x2=4.
∴B(1,0).
∴AB=3,AO=4,OC=3,AC=5,AP=3-t,AQ=5-2t.
①若∠Q1P1A=90°,则P1Q1∥OC(如图1),
∴△AP1Q1∽△AOC.
∴,∴.解得t=;
②若∠P2Q2A=90°,∵∠P2AQ2=∠OAC,∴△AP2Q2∽△AOC.
∴,∴.解得t=;
综上所述,当t的值为或时,以P、Q、A为顶点的三角形与△AOC相似.
(3)答:存在.
过点D作DF⊥x轴,垂足为E,交AC于点F(如图2).
∴S△ADF=DF·AE,S△CDF=DF·OE.
∴S△ACD=S△ADF+S△CDF=DF×(AE+OE)=×4(DE+EF)=2×()=.
∴S△ACD=(0<x<4).
又0<2<4且二次项系数,∴当x=2时,S△ACD的面积最大.
而当x=2时,y=.
∴满足条件的D点坐标为D(2,).
考点:二次函数综合题.
科目:初中数学 来源: 题型:解答题
某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价x定为多少元时,才能使每天所赚的利润y 最大?并求出最大利润。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线(m是常数,)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.
(1)此抛物线的解析式;
(2)求点A、B、C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线y=x²-4x+3.
(1)该抛物线的对称轴是 ,顶点坐标 ;
(2)将该抛物线向上平移2个单位长度,再向左平移3个单位长度得到新的二次函数图像,请写出相应的解析式,并用列表,描点,连线的方法画出新二次函数的图像;
x | … | | | | | | … |
y | … | | | | | | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图所示,在平面直角坐标系中,Rt△OBC的两条直角边分别落在x轴、y轴上,且OB=1,OC=3,将△OBC绕原点O顺时针旋转90°得到△OAE,将△OBC沿y轴翻折得到△ODC,AE与CD交于点F.
(1)若抛物线过点A、B、C, 求此抛物线的解析式;
(2)求△OAE与△ODC重叠的部分四边形ODFE的面积;
(3)点M是第三象限内抛物线上的一动点,点M在何处时△AMC的面积最大?最大面积是多少?求出此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:如图,在平面直角坐标系中,抛物线过点A(6,0)和点B(3,).
(1)求抛物线的解析式;
(2)将抛物线沿x轴翻折得抛物线,求抛物线的解析式;
(3)在(2)的条件下,抛物线上是否存在点M,使与相似?如果存在,求出点M的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0).
(1)求△ABC中边BC上高AD;
(2)当x为何值时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com