如图,两个正方形的面积分别为16,9,两阴影部分面积分别为a,b(a>b),则(a-b)等于( )
A.7 B.6 C.5 D.4
科目:初中数学 来源: 题型:
如图:AB∥CD,GO和HO分别是∠BGH和∠GHD的角平分线。你能算出∠GOH的度数吗?如果作OP⊥AB,OQ⊥CD,OR⊥EF,你能找到图中的全等三角形吗?说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图16,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.
(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;
(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).规定:同一日内,顾客在本商场每消费满100元就可以转转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.
(1)该顾客最少可得_______元购物券,最多可得______元购物券;
(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.
图8
查看答案和解析>>
科目:初中数学 来源: 题型:
综合与探究:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求直线AC的解析式及B、D两点的坐标;
(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q.试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形,若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.
(1)求证:AF-BF=EF;
(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的,每个骰子的六个面的点数分别是1到6,其中可看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是( )
A. 41 B.40 C.39 D.38
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com