精英家教网 > 初中数学 > 题目详情
2.先化简(1-$\frac{1}{x-2}$)÷($\frac{x+2}{{x}^{2}-4}$),再求x=1时代数式的值.

分析 先计算括号内的式子、化除法为乘法,然后约分化简,代入求值即可.

解答 解:(1-$\frac{1}{x-2}$)÷($\frac{x+2}{{x}^{2}-4}$),
=$\frac{x-2-1}{x-2}$×$\frac{(x+2)(x-2)}{x+2}$,
=x-3.
当x=1时,原式=1-3=-2.

点评 本题考查了分式的化简求值,化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,将四边形ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF,若AE∥CF且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若AC⊥EF,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)$({2\sqrt{12}-3\sqrt{\frac{1}{3}}})×\sqrt{6}$.
(2)$\frac{2}{3}\sqrt{9x}-({6\sqrt{\frac{x}{4}}+2\sqrt{x}})(x>0)$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程:1-$\frac{x}{x-1}$=$\frac{2}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若方程组$\left\{\begin{array}{l}{a_1}x+{b_1}y={c_1}\\{a_2}x+{b_2}y={c_2}\end{array}\right.$的解是$\left\{\begin{array}{l}x=3\\ y=4\end{array}\right.$,则方程组$\left\{\begin{array}{l}\frac{1}{2}{a_1}x+\frac{1}{3}{b_1}y={c_1}\\ \frac{1}{2}{a_2}x+\frac{1}{3}{b_2}y={c_2}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=6}\\{y=12}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知一组数据a1,a2,a3,a4的平均数是2017,则另一组数据a1+3,a2-2,a3-2,a4+5的平均数是2018.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,已知抛物线y=-x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).
(1)求抛物线的函数表达式;
(2)点P是抛物线上位于第一象限内的动点,是否存在点P,使△PBC得面积最大,若存在,请求出点P的坐标和△PBC面积的最大值;若不存在,请说明理由;
(3)如图2,直线l经过A、C两点,点Q时位于y轴左侧的抛物线上的一动点,经过点B和点Q的直线m,与y轴相交于点M,与直线l相交于点N,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连AF,DE.求证:AF=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.矩形ABCD中放置了6个形状、大小都相同的小矩形,所标尺寸如图所示,则图中阴影部分的面积是33cm2

查看答案和解析>>

同步练习册答案