½â£º£¨1£©¡ßµãB£¨0£¬2£©£¬
¡àOB=2£¬
¡ß¡ÏODB=30¡ã£¬
¡àOD=OB•cot30¡ã=2
£¬
¡ßEΪBDÖе㣬
¡àµãEµÄ×ø±êΪ£¨-
£¬1£©£¬
¡ßÅ×ÎïÏßy=ax
2-
x+c¾¹ýB£¨0£¬2£©¡¢E£¨-
£¬1£©£¬
¡à
£¬
½âµÃ
£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-
x
2-
x+2£»
£¨2£©¡ßµãB£¨0£¬2£©£¬D£¨-2
£¬0£©£¬
¡àÖ±ÏßBDµÄ½âÎöʽΪy=
x+2£¬
¡ßµãE£¨-
£¬1£©£¬
¡àÖ±ÏßOEµÄ½âÎöʽΪy=-
x£¬
¢ÙEP¡ÎODʱ£¬µãPµÄ×Ý×ø±êÓëµãEµÄ×Ý×ø±êÏàͬ£¬Îª1£¬
¡ßµãPÔÚÅ×ÎïÏßÉÏ£¬
¡à-
x
2-
x+2=1£¬
½âµÃx
1=-
£¨ÎªµãE£¬ÉáÈ¥£©£¬x
2=
£¬
¡àµãPµÄ×ø±êΪ£¨
£¬1£©£¬
¢ÚDP¡ÎOEʱ£¬ÉèÖ±ÏßDPµÄ½âÎöʽΪ£ºy=-
x+m£¬
Ôò-
¡Á£¨-2
£©+m=0£¬
½âµÃm=-2£¬
ËùÒÔ£¬Ö±ÏßDPµÄ½âÎöʽΪy=-
x-2£¬
ÁªÁ¢
£¬
½âµÃ
£¬
£¬
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨
£¬
£©»ò£¨
£¬
£©£¬
¢ÛOP¡ÎDEʱ£¬Ö±ÏßOPµÄ½âÎöʽΪy=
x£¬
ÁªÁ¢
£¬
½âµÃ
£¬
£¬
¡àµãPµÄ×ø±êΪ£¨
£¬
£©»ò£¨
£¬
£©£¬
¡àµãPÓÐ5¸ö£¬ÎªP
1£¨
£¬1£©£¬P
2£¨
£¬
£©£¬P
3£¨
£¬
£©£¬P
4£¨
£¬
£©£¬P
5£¨
£¬
£©£»
£¨3£©Áîy=0£¬Ôò-
x
2-
x+2=0£¬
ÕûÀíµÃ£¬3x
2+
x+12=0£¬
½âµÃx
1=-
£¬x
2=
£¬
¡ßÅ×ÎïÏßÓëxÖáÏཻÓÚA¡¢F£¬AÔÚFµÄ×ó²à£¬
¡àAµãµÄ×ø±êΪ£¨
£¬0£©£¬
¹ýµãE×÷EG¡ÍODÓÚG£¬¡ßµãE£¨-
£¬1£©£¬
¡àOG=
£¬EG=1£¬
¡àAG=
+
=2
£¬
ÔÚRt¡÷AEGÖУ¬AE=
=
=
£»
¹ýµãO×÷OK¡ÍAEÓÚK£¬
Ôòsin¡ÏEAG=
=
£¬
¼´
=
£¬
½âµÃOK=
£¬
cos¡ÏEAG=
=
£¬
¼´
=
£¬
½âµÃAK=
£¬
¡ß¡÷OMNÊǵȱßÈý½ÇÐΣ¬
¡àKM=OK•cot60¡ã=
¡Á
=
£¬
¡àAM=AK+KM=
+
=
£¬
»òAM=AK-KM=
-
=
£®
·ÖÎö£º£¨1£©½âÖ±½ÇÈý½ÇÐÎÇó³öODµÄ³¤¶È£¬ÔÙ¸ù¾ÝµãEÊÇBDµÄÖеãÇó³öµãEµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ½â´ð£»
£¨2£©ÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽÇó³öÖ±ÏßBD¡¢OEµÄ½âÎöʽ£¬È»ºó·Ö¢ÙEP¡ÎODʱ£¬µãPµÄ×Ý×ø±êÓëµãEµÄ×Ý×ø±êÏàͬ£¬´úÈëÅ×ÎïÏß¼ÆËã¼´¿ÉÇó³öµãPµÄºá×ø±ê£¬¢ÚDP¡ÎOEʱ£¬¸ù¾ÝƽÐÐÖ±ÏߵĽâÎöʽµÄkÖµÏàµÈÇó³öDPµÄ½âÎöʽ£¬ÔÙÓëÅ×ÎïÏß½âÎöʽÁªÁ¢Çó½â¼´¿É£»¢ÛOP¡ÎDEʱ£¬ÏÈÇó³öÖ±ÏßOPµÄ½âÎöʽ£¬ÔÙÓëÅ×ÎïÏß½âÎöʽÁªÁ¢Çó½â¼´¿É£»
£¨3£©Áîy=0£¬ÀûÓÃÅ×ÎïÏß½âÎöʽÇó³öµãAµÄ×ø±ê£¬¹ýµãE×÷EG¡ÍODÓÚG£¬Çó³öAG¡¢EG£¬ÔÙÀûÓù´¹É¶¨ÀíÁÐʽ¼ÆËã¼´¿ÉÇó³öAEµÄ³¤£»¹ýµãO×÷OK¡ÍAEÓÚK£¬ÀûÓáÏEAGµÄÕýÏÒÖµÁÐʽÇó³öOK£¬ÓàÏÒÖµÁÐʽÇó³öAK£¬ÔÙ¸ù¾ÝµÈ±ßÈý½ÇÐεÄÐÔÖÊÇó³öKMµÄ³¤¶È£¬È»ºó·ÖµãMÔÚµãKµÄ×ó±ßÓëÓÒ±ßÁ½ÖÖÇé¿ö½â´ð£®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¨°üÀ¨¶þ´Îº¯Êý½âÎöʽÓëÒ»´Îº¯Êý½âÎöʽ£©£¬ÁªÁ¢Á½º¯Êý½âÎöʽÇó½»µã×ø±ê£¬µÈ±ßÈý½ÇÐεÄÐÔÖÊ£¬½âÖ±½ÇÈý½ÇÐΣ¬ÌâÄ¿ÄѶȽϴó£¬ÇÒÔËËãÁ¿½Ï´ó£¬ÐèÒª·ÖÇé¿öÌÖÂÛÊÇ×î´óµÄÄѵ㣮