精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知抛物线y=ax2+bx+3的对称轴是x=1, 并且经过点(-2,-5).

(1)求此抛物线的解析式;

(2)设此抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于C点,D是线段BC上一点(不与点BC重合),若以BOD为顶点的三角形与BAC相似,求点D的坐标;

(3)点Py轴上,点M在此抛物线上,若要使以点PMAB为顶点的四边形是平行四边形,请你直接写出点M的坐标.

【答案】(1) 抛物线的解析式为;(2)(),(1,3)(3)(2,3)、(4,-5)、(-4,-21).

【解析】

(1)根据待定系数法列出方程组,求出a、b的值即可;(2)根据抛物线解析式求出与x轴、y轴的交点,根据相似三角形的性质列出比例式,结合勾股定理解答即可;(3)画出图形,根据平行四边形的性质可得M点坐标.

(1)题意,得

解这个方程组,得

抛物线的解析式为

(2)令.

解这个方程得,

所以AB=4,OB=0C=3,,所以

过点DDEx轴于点E.

,BE=DE.

要使BOD∽△BACBDO∽△BAC,

已有∠ABC=∠OBD, 则只需成立.

成立,

则有BD=

Rt△BDE中,由勾股定理,得

BE2+DE2=2BE2=BD2

∴BE=DE=

OE=OB-BE=3-

∴点D的坐标为).

成立,则有BD=.

RtBDE中,由勾股定理,得BE2+DE2=2BE2=BD2=(22

∴BE=DE=2.

OE=OB-BE=3-2=1.

∴点D的坐标为(1,2).

∴点D的坐标为(1,2).

(3)点M的坐标为(2,3)(4,﹣5)(﹣4,﹣21).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE.

1求证:DE是O的切线;

2若AE=6,D=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.

(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是

(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:

1ctan30°=

2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片.将这两张三角形胶片的顶点B与顶点E重合,把绕点B顺时针方向旋转,这时ACDF相交于点O.

(1)当旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD∠DCA的数量关系是

(2)当继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.

(3)在图③中,连接BO,AD,探索BOAD之间有怎样的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一袋装有编号为1,2,3的三个形状、大小、材质等相同的小球,从袋中随意摸出1个球,记事件A摸出的球编号为奇数,随意抛掷一个之地均匀正方体骰子,六个面上分别写有1﹣66个整数,记事件B向上一面的数字是3的整数倍,请你判断等式“P(A)=2P(B)”是否成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).

(1)求此抛物线的表达式;

(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PBx轴于点B,且AC=BC.

(1)求一次函数、反比例函数的解析式;

(2)根据图象直接写出kx+b<x的取值范围;

(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,直线的函数解析式为,与轴交于点,与轴交于点

1)直接写出点的坐标________点的坐标________

2)若点为线段上的一个动点,作轴于点轴于点,连接,问:①若的面积为,求关于的函数关系式;②直接写出的最小值________

查看答案和解析>>

同步练习册答案