精英家教网 > 初中数学 > 题目详情
3.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点(  )
A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)

分析 直接利用“帅”位于点(-1,-2),可得原点的位置,进而得出“兵”的坐标.

解答 解:如图所示:可得“炮”是原点,
则“兵”位于点:(-3,1).
故选:C.

点评 此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图所示,AB∥CD,∠B=∠D,求证:BF∥DE(请在括号或横线上填空)
证明:∵AB∥CD(已知)
∴∠B=∠1((两直线平行,同位角相等)
∵∠B=∠D(已知)
∴∠1=∠D(等量代换)
∴BF∥DE(同位角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.问题提出
平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.
初步思考
(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)
(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.
深入研究
(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.若关于x的一元二次方程x2-4x-k=0有两个实数根,则(  )
A.k>4B.k>-4C.k≥4D.k≥-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简:
(1)3$\sqrt{3}$-($\sqrt{12}$+$\sqrt{\frac{1}{3}}$)
(2)($\sqrt{18}$-$\sqrt{24}$)÷$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程组
(1)$\left\{\begin{array}{l}{3x+2y=19}\\{2x-y=1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{4(x+y)-5(x-y)=2}\\{\frac{x+y}{2}+\frac{x-y}{3}=6}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列说法错误的是(  )
A.相等的角是对顶角
B.同角的补角相等
C.直线外一点与直线上各点连接的所有线段中,垂线段最短
D.平行于同一条直线的两条直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.为了解九(3)班学生每天零花钱的使用情况,小明随机调查了20名同学,结果如表:关于这20名同学每天使用的零花钱,下列说法错误的是(  )
每天使用零花钱(单位:元)012345
人数256421
A.众数是2元B.中位数是2元C.极差是5元D.平均数是2.45元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,矩形ABCD中,AB=8,BC=8$\sqrt{3}$,半径为$\sqrt{3}$的⊙P与线段BD相切于点M,圆心P与点C在直线BD的同侧,⊙P沿线段BD从点B向点D滚动.
发现:BD=16;∠CBD的度数为30°;
拓展:
①当切点M与点B重合时,求⊙P与矩形ABCD重叠部分的面积;
②在滚动过程中如图2,求AP的最小值;
探究:
①若⊙P与矩形ABCD的两条对角线都相切如图3,求此时线段BM的长,并直接写出tan∠PBC的值;
②在滚动过程中如图4,点N是AC上任意一点,直接写出BP+PN的最小值.

查看答案和解析>>

同步练习册答案