【题目】如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE=(AB+AD),求∠ABC+∠ADC的度数.
【答案】180°
【解析】
延长AD过C作CF⊥AD于F,由条件可证△AFC≌△AEC,得到CF=CE.再由条件可证BE=DF,所以△CDF≌△CEB,由全等的性质可得∠ABC=∠CDF,问题可得解.
过C作CF⊥AD于F.
∵AC平分∠BAD,∴∠FAC=∠EAC.
∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEA=90°,∴△AFC≌△AEC(AAS),∴AF=AE,CF=CE.
∵,∴2AE=AB+AD.
又∵AD=AF﹣DF,AB=AE+BE,AF=AE,∴2AE=AE+BE+AE﹣DF,∴BE=DF.
∵∠DFC=∠CEB=90°,CF=CE,∴△CDF≌△CEB(SAS),∴∠ABC=∠CDF.
∵∠ADC+∠CDF=180°,∴∠ABC+∠ADC=180°.
科目:初中数学 来源: 题型:
【题目】某学校开展课外体育活动,决定开设:篮球、:乒乓球、:踢毽子、:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.
(1)求出“最喜欢篮球”部分的扇形的圆心角度数;
(2)请把条形统计图补充完整;
(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解饮料自动售货机的销售情况,有关部门从北京市所有的饮料自动售货机中随机抽取20台进行了抽样调查,记录下某一天各自的销售情况单位:元,并对销售金额进行分组,整理成如下统计表:
28,8,18,63,15,30,70,42,36,47,
25,58,64,58,55,41,58,65,72,30
销售金额x | ||||
划记 | ______ | ______ | ||
频数 | 3 | 5 | ______ | ______ |
请将表格补充完整;
用频数分布直方图将20台自动售货机的销售情况表示出来,并在图中标明相应数据;
根据绘制的频数分布直方图,你能获取哪些信息?至少写出两条不同类型信息
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A点的坐标为(0,4),B点的坐标为(3,0),C(a,b)为平面直角坐标系内一点,若∠ABC=90°,且BA=BC,求ab的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD平分∠BAC,∠EAD=∠EDA.
(1)∠EAC与∠B相等吗?为什么?
(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.
(1)求1号线,2号线每千米的平均造价分别是多少亿元?
(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. 求证:四边形BCFE是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com